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FREE SURFACE WAVES OVER AN OBSTRUCTION

JEONG-WHAN CHOI

Abstract. Surface waves at the free surface of an incompressible fluid passing
over an obstruction are considered. We review numerical and theoritical results
of various types waves and some new solitary wave types of solutions of forced
KdV equation and extended KdV equation with forcing term.

We consider surface waves on a two dimensional, incompressible, inviscid fluid
flow over a bump on a flat bottom. This problem generate many interesting wave
patterns and require new mathematical methods to find solutions. They have been
investigated numerically in [1] to [4] and [11] to [13], and the mathematical exis-
tence of the interfacial solitary waves has been proved in [5] to [9], among others.
Discussion of solitary waves in continuously stratified fluids can be found in the
book on stratified flow by Yih [10] and the references cited there. They have also
studied asymptotically and found possible many interesting wave patterns in [14]
to [19].

Numerical computations of steady solutions to exact equations for a semicircular
bump ( [11] - [13]) indicate the following results. For 1 < F+ < F there are
two branches of supercritical solutions and no solution exists below F+. Each
supercritical solution behaves like a solitary wave. Here, F is so called Froude
number defined by F = c/(gH0)1/2 where H0 is the constant depth of the fluid
flow as the size of the bump becomes zero and c is the constant speed of the fluid
flow far upstream. As the size of the bump tends to zero, one branch of approaches
the uniform state far upstream and the other branch approaches a solitary wave.
As F increases, the branch of larger solutions approaches a limiting configuration
with a 120 degrees of angle at the crest. For F < F− < 1, only one branch of
subcritical solutions is found and no solution exists above F−. They exhibit a
quiescent region upstream and a Stokes wave train down stream. In F− < F < F+

even if no steady solution exists unsteady waves can appear. A solution which
behaves like a hydraulic fall with F < 1 and the down stream Froude number has
been found [13]. The solution remains almost constant up to the obstacle, then
decreases monotonically to a constant value far down stream.

Next, we review the asymptotic study for the similar fluid flow as was in [11]
to [13]. If F = 1 + εF1 is close to unity where ε is a small positive parameter, an
inhomogeneous nonlinear ordinary differential equation can be derived as a model
equation for the study of the surface waves over a bump. For this purpose the
following Euler equations with boundary conditions and asymptotic expansions are
considered,

2000 Mathematics Subject Classification. 76.
Key words and phrases. Wave, FKdV, Obstruction.
Received May 8, 2001.

c©2001 Information Center for Mathematical Sciences

161



162 JEONG-WHAN CHOI

u∗x∗ + v∗y∗ = 0 (1)

u∗u∗x∗ + v∗u∗y∗ = −p∗x∗/ρ∗ (2)

u∗v∗x∗ + v∗v∗y∗ = −p∗y∗/ρ∗ − g (3)

at the free surface, y∗ = η∗(x∗),

u∗η∗x∗ − v∗ = 0, p∗ = 0; (4)

at the rigid lower boundaries, y∗ = h∗(x∗),

v∗ − u∗h∗x∗ = 0, (5)

where (u∗, v∗) are velocities, p∗ is a pressure, ρ∗ is the constant density of the
fluid, g is the gravitational acceleration constant, and h∗(x∗) = −H∗ + b∗(x∗),
where H∗ is the constant depth of the fluid at equilibrium state, and b∗(x∗) stands
for the obstruction with finite support on the rigid bottom.

The following nondimensional variables are required to remove physical units in
Euler equations:

ε = (H∗/L)1/2, η = ε−1η∗/H∗, x = ε1/2x∗/H∗, y = y∗/H∗ p = p∗/gH∗ρ∗,

(u, v) = (gH∗)−1/2(u∗, ε−1v∗), h(x) = h∗(x)/H∗, b(x) = b∗(x)(H∗ε2)−1,

where L is the horizontal length scale, which is used to be much larger than vertical
length scale. This is so-called long wave assumption.

In terms of the above nondimensional variables and assuming that u, v, p and η
possess asymptotic expansions of the form

φ = φ0 + εφ1 + ε2φ2 + · · ·
with a physically suitable conditions for u0, v0, p0 and the upstream Froude num-
ber F = C/(gH∗)1/2 = 1 + ελ, a system of differential equations and boundary
conditions for successive approximations are obtained according to the order of ε.
Then, by solving the resulting equations the following FKdV equation is derived,

−1
3
η1xxx − 3η1η1x + 2λη1x = bx. (6)

Integrating (6) from −∞ to x yields

η1xx = (−9/2)η2
1 + 6λη1 − 3b(x). (7)

Existence theorems of (7) are given as follows, Theorem 1 (S.P. Shen) [15] (7)

has a positive C2−solution which decays exponentially at |x| = ∞ for large λ if
b(x) has a compact support. Theorem 2 (S.P. Shen) [15] There exits λc > 0

such that (7) has at least two positive C2−solution for λ > λc and no solutions for
λ < λc if b(x) has a positive compact support. Theorem 3 (Jeongwhan Choi)

[20] (7) has a negative continuous solution which decays exponentially at |x| = ∞
for negative λ if b(x) is negative and is continuous. Numerical studies for equation

(7) gives interesting wave patterns. When b(x) in (7) is positive two symmetric
solitary wave-like solutions appear when F1 is positive and Hydraulic fall solution
appears when F1 is a certain negative number, below which typical periodic wave
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solutions appear([14],[15]).When b(x) is negative, many interesting new solutions
appear [20]. Two critical values of F1, say λ1 and λ2, exist so that, for F1 > λ1,
two positive symmetric solitary-wave-like solutions appear and, for F1 > λ2, two
positive unsymmetric solitary-wave-like solutions appear. In this case of negative
b(x), a negative symmetric solitary-wave-like solution appears for any positive value
of λ. We also note that negative symmetric solitary- wave-like solution and the cut-
off point for the appearance of positive unsymmetric solitary-wave-like solutions do
not occur if b(x) is of the positive semicircular form [14], [15]. Some other types of
symmetric or unsymmetric wave solutions of [7] were found in [20] which decays to
zero at ±∞.

Two-layer immiscible inviscid and incompressible fluid have been considered and
exhibited many interesting wave phenomena. Numerical studies of steady flow of a
two layer fluid over a bump or a step bounded by a free or rigid upper boudary were
carried out by Fforbes[21], Belward and Forbes[22], Sha and Vanden-Broeck[23],
and Moni and King[24], among others and an asymptotic approach for the case of
rigid upper boundary was developed without surface tension by Shen on the basis
of the FKdV theory and with surface tension by Choi, Sun, and Shen ([16],[17]).
The KdV theory fails when the coefficient of th nonlinear term or that of the third
derivative in th FKdV vanishes. In the case considered [17], when the wave speed
is near the smaller critical speed of

u0 = [
1 + h± [(1− h)2 + 4ρh]1/2

2
]1/2

for internal wave, the amplitude of which is larger at the interface than at the
free surface, the coefficient of the nonlinear term in th FKdV may vanish and the
following Extended KdV with forcing is derived and studied for the wave motion
of the fluid,

F1ηxxx + (F2η
2 + F3ηF4)ηx = F5bx.

Three types of solution waves have been found. The first type solution consists
of symmetric solitary wave like solutions, the second type solution is one that is a
part of a free solitary wave behind the bump and a periodic wave solution ahead
of the bump. The free solitary wave is a solitary wave solution of the extended
KdV equation without forcing. By a third type solution, we mean a solution that
is constant behind the bump and a periodic wave ahead of the bump. In many
cases both second and third type solutions do satisfy the conservation of mass,
even if they do not tend to zero far up stream. It is found that for branches of
first type solutions can appear in the supercritical case and there are no first and
second type solutions in the subcritical case. The third type solutions appear in
both supercritical and subcritical cases. In both cases symmetric solutions without
a periodic part are embedded in the third type solutions at discrete values of a
parameter, and a hydraulic jump wave solution appears as a limiting case of third
type solutions in the subcritical case.
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