OPEN PROBLEMS IN TOEPLITZ OPERATOR THEORY

WOO YOUNG LEE

ABSTRACT. In this article we give open problems concerning algebraic properties, subnormality, hyponormality, and spectral properties of Toeplitz operators.

CONTENTS

Introduction
List of Problems
§1. Algebraic Properties of Toeplitz Operators
§2. Subnormality of Toeplitz Operators
§3. Self-commutators of Toeplitz Operators
§4. Hyponormality of Toeplitz Operators
§5. $p$-hyponormality of Toeplitz Operators
§6. Hyponormality of Block Toeplitz Operators
§7. Spectral Properties of Toeplitz Operators
References

INTRODUCTION

Let $\mathcal{H}$ and $\mathcal{K}$ be complex Hilbert spaces, let $\mathcal{L}(\mathcal{H}, \mathcal{K})$ be the set of bounded linear operators from $\mathcal{H}$ to $\mathcal{K}$ and write $\mathcal{L}(\mathcal{H}) := \mathcal{L}(\mathcal{H}, \mathcal{H})$. An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be normal if $T^*T = TT^*$, hyponormal if $T^*T \succeq TT^*$, and subnormal if $T = N|_\Omega$, where $N$ is normal on some Hilbert space $\mathcal{K} \supseteq \mathcal{H}$. If $T$ is subnormal then $T$ is also hyponormal. Recall that the Hilbert space $L^2(\mathbb{T})$ has a canonical orthonormal basis given by the trigonometric functions $e_n(z) = z^n$, for all $n \in \mathbb{Z}$, and that the Hardy space $H^2(\mathbb{T})$ is the closed linear span of $\{e_n : n = 0, 1, \ldots\}$. An element $f \in L^2(\mathbb{T})$ is said to be analytic if $f \in H^2(\mathbb{T})$, and co-analytic if $f \in L^2(\mathbb{T}) \ominus H^2(\mathbb{T})$. If $P$ denotes the projection operator $L^2(\mathbb{T}) \to H^2(\mathbb{T})$, then for every $\varphi \in L^\infty(\mathbb{T})$, the operators $T_\varphi$ and $H_\varphi$ on $H^2(\mathbb{T})$ defined by

$$T_\varphi g := P(\varphi g) \quad \text{and} \quad H_\varphi(g) := (I - P)(\varphi g) \quad (g \in H^2(\mathbb{T}))$$

2000 Mathematics Subject Classification. Primary 47B20, 47B35, 47B37; Secondary 47-04, 47A20, 47A57.

Key words and phrases. Toeplitz operators, hyponormal operators, subnormal operators, (weakly) $k$-hyponormal operators, $p$-hyponormal operators, self-commutators, block Toeplitz operators, spectral continuity.

Received June 7, 2001

©2001 Information Center for Mathematical Sciences

133
are called the *Toeplitz operator* and the *Hankel operator*, respectively, with symbol \( \varphi \). In this article we give open problems on Toeplitz operators and some related problems.

**LIST OF PROBLEMS**

**Problem 1.** Find a necessary and sufficient condition that the product \( T_{\varphi_1} \cdots T_{\varphi_n} \) of Toeplitz operators be a Toeplitz operator.

**Problem 2.** Let \( T_\varphi \) be a hyponormal Toeplitz operator. Find a necessary and sufficient condition that \( T_\varphi^2 \) be hyponormal. More generally, if \( T_\varphi \) and \( T_\psi \) are hyponormal Toeplitz operators, for which symbols \( \varphi \) and \( \psi \), is \( T_\varphi T_\psi \) hyponormal?

**Problem 3.**
1. If \( \psi \) is a Riemann map between simply connected domains, does it follow that \( T_{\psi+\alpha \overline{\psi}} \) is subnormal for some \( \alpha \) with \( 0 < \alpha < 1 \)?
2. Conversely, if \( T_{\psi+\alpha \overline{\psi}} \) is subnormal for some \( \alpha \) with \( 0 < \alpha < 1 \), does it follow that \( \psi \) is a Riemann map between simply connected domains?
3. More generally, for which \( f \in H^\infty \) is there \( \lambda \), \( 0 < \lambda < 1 \), with \( T_f + \lambda T_f^* \) subnormal?

**Problem 4.**
1. Let \( T \equiv W_\alpha \) be the weighted shift with weight sequence \( \alpha = \{\alpha_k\}_{k=0}^\infty \) with
   \[
   \alpha_k = \left( \sum_{j=0}^{k} \alpha^{2j} \right)^{\frac{1}{2}}.
   \]
   and let \( S := T + \lambda T^* \) (\( \lambda \in \mathbb{C} \)). Find a necessary and sufficient condition in terms of \( \lambda \) for \( S \) to be (weakly) \( k \)-hyponormal.
2. Make an analogue theory with the Bergman shift \( T \) or a recursively generated weighted shift \( T \) and an operator \( S_\lambda \) in place of \( T \) and \( T + \lambda T^* \) in the above setting.

**Problem 5.** Let \( 0 < \alpha < 1 \) be given and let \( \psi \) be a Riemann map of the unit disk onto the interior of the ellipse with vertices \( \pm (1 + \alpha)i \) and passing through \( \pm (1 - \alpha) \). Let \( \varphi = \psi + \alpha \overline{\psi} \) and let \( T_\varphi \) be the corresponding Toeplitz operator on \( H^2 \). Find a necessary and sufficient condition in terms of \( \lambda \) for \( T_\varphi \) to be (weakly) \( k \)-hyponormal.

**Problem 6.** If \( T_\varphi \) is a 2-hyponormal Toeplitz operator with nonzero finite rank self-commutator, does it follow that \( T_\varphi \) is analytic? If the answer is affirmative, is \( \varphi \) a linear function of a finite Blaschke product?

**Problem 7.** Let \( \varphi(z) = \sum_{n=-m}^N a_n z^n \). Find the classes of \( \varphi \) satisfying
   (i) \( T_\varphi \) is a hyponormal operator.
   (ii) For every zero \( \zeta \) of \( z^m \varphi \) such that \( |\zeta| > 1 \), the number \( 1/\overline{\zeta} \) is a zero of \( z^m \varphi \) in the open unit disk \( \mathbb{D} \) of multiplicity greater than or equal to the multiplicity of \( \zeta \).

**Problem 8.** Is every \( p \)-hyponormal Toeplitz operator hyponormal?

**Problem 9.** Determine the hyponormality of block Toeplitz operators \( T_\Phi \) (\( \Phi \in L^\infty \otimes M_n \)).
Problem 10.
(1) Does there exist a Toeplitz operator that is polynomially hyponormal but not subnormal?
(2) Is every polynomially hyponormal Toeplitz operator rationally hyponormal?
(3) Is every Toeplitz operator a von-Neumann operator?

Problem 11. Identify subsets $S$ of $L^\infty(T)$ for which the spectrum $\sigma$ is continuous when restricted to the set of Toeplitz operators with symbols in $S$.

§1. Algebraic Properties of Toeplitz Operators

In [BH, Theorem 8] it was shown that a necessary and sufficient condition that the product $T_\varphi T_\psi$ of two Toeplitz operators be a Toeplitz operator is that either $\varphi$ be co-analytic or $\psi$ be analytic; if the condition is satisfied, then $T_\varphi T_\psi = T_\varphi \psi$. What can we say about the product $T_\varphi_1 \cdots T_\varphi_n$?

Problem 1. Find a necessary and sufficient condition that the product $T_\varphi_1 \cdots T_\varphi_n$ of Toeplitz operators be a Toeplitz operator.

Here is a partial-strategy to Problem 1.

Theorem 1.1. If $T_\varphi$ is a Toeplitz operator such that $T_\varphi$ is one-one then a necessary condition for $T_\varphi S$ to be a Toeplitz operator for an operator $S \in L(H^2)$ is that $S$ is an analytic Toeplitz operator.

Proof. Let $(\alpha_{ij})$ be the matrix of $S$. If the Fourier expansion of $\varphi$ is $\varphi = \sum a_i z^i$, so that the matrix of $T_\varphi$ is $(\alpha_{i-j})$, then a straightforward calculation shows that if $(\beta_{i-j})$ is the matrix of $T_\varphi S$ then

$$\beta_{i,j} = \sum_{k=1}^{\infty} a_{i+2-k} \alpha_{k,j},$$

whenever $i, j \geq 1$. Since $\beta_{i,j} = \beta_{i+1,j+1}$ for each $i, j \geq 1$, we have the following equation:

$$
\begin{pmatrix}
  a_1 & a_0 & a_{-1} & a_{-2} & \cdots \\
  a_2 & a_1 & a_0 & a_{-1} & \cdots \\
  a_3 & a_2 & a_1 & a_0 & \cdots \\
  \vdots & \vdots & \vdots & \vdots & \ddots \\
  \vdots & \vdots & \vdots & \vdots & \ddots \\
\end{pmatrix}
\begin{pmatrix}
  \alpha_{1,j} \\
  \alpha_{2,j} - \alpha_{1,j-1} \\
  \alpha_{3,j} - \alpha_{2,j-1} \\
  \alpha_{4,j} - \alpha_{3,j-1} \\
  \vdots \\
\end{pmatrix} =
\begin{pmatrix}
  0 \\
  0 \\
  0 \\
  \vdots \\
\end{pmatrix}
$$

for each $j \geq 2$.

Since the Toeplitz matrix in the left-hand side is the matrix of $T_\varphi$, it follows from the injectivity of $T_\varphi$ that

$$
\begin{pmatrix}
  \alpha_{1,j} \\
  \alpha_{2,j} - \alpha_{1,j-1} \\
  \alpha_{3,j} - \alpha_{2,j-1} \\
  \alpha_{4,j} - \alpha_{3,j-1} \\
  \vdots \\
\end{pmatrix} =
\begin{pmatrix}
  0 \\
  0 \\
  0 \\
  \vdots \\
\end{pmatrix}
$$

for each $j \geq 2$. 

which implies that for \( j \geq 2 \),

\[
\alpha_{1+k,j+k} = 0 \quad \text{for each } k \geq 2
\]

and for \( i \geq j \),

\[
\alpha_{i,j} = \alpha_{i+1,j+1}.
\]

This shows that \( S \) must be an analytic Toeplitz operator. \( \square \)

**Remark.** Theorem 1.1 may be false if the condition “\( T_z \varphi \) is one-one” is dropped. For example, consider

\[
\begin{pmatrix}
1 & 0 & 0 & 0 & \ldots \\
\frac{1}{2} & 1 & 0 & 0 & \ldots \\
0 & \frac{1}{2} & 1 & 0 & \ldots \\
0 & 0 & \frac{1}{2} & 1 & \ldots \\
0 & 0 & 0 & \frac{1}{2} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}
\begin{pmatrix}
1 & -\frac{1}{2} & 0 & 0 & \ldots \\
\frac{1}{2} & \frac{5}{4} & -\frac{1}{2} & 0 & \ldots \\
0 & -\frac{5}{8} & \frac{5}{4} & -\frac{1}{2} & \ldots \\
0 & \frac{1}{16} & -\frac{5}{8} & \frac{5}{4} & -\frac{1}{2} & \ldots \\
0 & \frac{1}{512} & \frac{1}{16} & -\frac{5}{8} & \frac{5}{4} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}
\]

\[
= \begin{pmatrix}
1 & -\frac{1}{2} & 0 & 0 & \ldots \\
0 & 1 & -\frac{1}{2} & 0 & \ldots \\
-\frac{1}{4} & 0 & 1 & -\frac{1}{2} & 0 & \ldots \\
0 & -\frac{1}{4} & 0 & 1 & -\frac{1}{2} & \ldots \\
0 & 0 & -\frac{1}{4} & 0 & 1 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}
\]

It is well known that there is a hyponormal operator whose square is not hyponormal (e.g., \( U^* + 2U \); see [Ha3, Problem 209]). Since \( U^* + 2U \) is a Toeplitz operator, the square of a hyponormal Toeplitz operator need not be hyponormal. Hence the following seems to be interesting:

**Problem 2.** Let \( T_\varphi \) be a hyponormal Toeplitz operator. Find a necessary and sufficient condition that \( T_\varphi^2 \) be hyponormal. More generally, if \( T_\varphi \) and \( T_\psi \) are hyponormal Toeplitz operators, for which symbols \( \varphi \) and \( \psi \), is \( T_\varphi T_\psi \) hyponormal?

### §2. Subnormality of Toeplitz Operators

We make a brief survey on answers to Problem 5 of Halmos’s 1970 lectures “Ten problems in Hilbert space” (cf. [Ha1],[Ha2]):

Is every subnormal Toeplitz operator either normal or analytic?
Even though the above problem was already answered negatively by Cowen and Long [CoL], it seems to be interesting to consider the following problem:

Which Toeplitz operators are subnormal?

The Halmos’s problem was answered affirmatively for trigonometric Toeplitz operators [ItW] and for quasinormal Toeplitz operators [AIW]. In 1976, Abrahamse [Ab] gave a general sufficient condition for the answer to the Halmos’s problem to be yes.

**Theorem 2.1 ([Ab] Theorem).** If

(i) $T_\varphi$ is hyponormal;
(ii) $\varphi$ or $\overline{\varphi}$ is of bounded type (i.e., $\varphi$ or $\overline{\varphi}$ is a quotient of two analytic functions);
(iii) $\ker[T_\varphi^*, T_\varphi]$ is invariant for $T_\varphi$,

then $T_\varphi$ is normal or analytic.

Since $\ker[T^*, T]$ is invariant for every subnormal operator $T$, Theorem 2.1 answers Halmos’s problem affirmatively when $\varphi$ or $\overline{\varphi}$ is of bounded type. Also, in [Ab], Abrahamse proposed a question for a strategy to answer Halmos’s problem:

Is the Bergman shift unitarily equivalent to a Toeplitz operator?

To review an answer to this question, recall that given a bounded sequence of positive numbers $\alpha : \alpha_0, \alpha_1, \cdots$ (called weights), the (unilateral) weighted shift $W_\alpha$ associated with $\alpha$ is the operator on $\ell^2(\mathbb{Z}_+)$ defined by $W_\alpha e_n := \alpha_n e_{n+1}$ for all $n \geq 0$, where $\{e_n\}_{n=0}^\infty$ is the canonical orthonormal basis for $\ell^2$. It is straightforward to check that $W_\alpha$ can never be normal, and that $W_\alpha$ is hyponormal if and only if $\alpha_n \leq \alpha_{n+1}$ for all $n \geq 0$. The Bergman shift is a weighted shift $W_\alpha$ with weights

$$\alpha := \left\{ \frac{n}{n+1} \right\}_{n=1}^\infty.$$

It is well-known that the Bergman shift is subnormal. In 1983, Sun Shunhua [Shu] showed that if a Toeplitz operator $T_\varphi$ is unitarily equivalent to a hyponormal weighted shift $W_\alpha$ with weight sequence $\alpha$, then $\alpha$ must be of the form

$$\alpha = \left\{ (1 - \beta^{2n+2})^{\frac{1}{2}} ||T_\varphi|| \right\}_{n=0}^\infty$$

for some $\beta$ ($0 < \beta < 1$),

thus answering Abrahamse’s question in the negative. Cowen and Long [CoL] showed that a unilateral weighted shift with weight sequence of the form (2.1.1) must be subnormal (also see [Fa2]). Consequently, we have:

**Theorem 2.2 ([Sun], [Cow2]).** Every hyponormal Toeplitz operator which is unitarily equivalent to a weighted shift must be subnormal.

At last, in 1984, Cowen and Long [CoL] constructed the symbol $\varphi$ for which $T_\varphi$ is unitarily equivalent to the weighted shift with weight sequence (2.1.1). This answered the Halmos’s problem negatively.
Theorem 2.3 ([CoL],[Cow2]). Let \(0 < \alpha < 1\) be given and let \(\psi\) be a Riemann map of the unit disk onto the interior of the ellipse with vertices \(\pm(1+\alpha)i\) and passing through \(\pm(1-\alpha)i\). Let \(\varphi = \psi + \alpha\bar{\psi}\), and let \(T_\varphi\) be the corresponding Toeplitz operator on \(H^2\). Then \(T_\varphi\) is a weighted shift with weight sequence

\[
\alpha_n = (1 - \alpha^2)^{\frac{j}{2}} \left( \sum_{j=0}^{n} \alpha^{2j} \right)^{\frac{1}{2}}
\]

and is subnormal but neither normal nor analytic.

Problem 3.

(1) If \(\psi\) is a Riemann map between simply connected domains, does it follow that \(T_\psi + \alpha\bar{\psi}\) is subnormal for some \(\alpha\) with \(0 < \alpha < 1\)?

(2) Conversely, if \(T_\psi + \alpha\bar{\psi}\) is subnormal for some \(\alpha\) with \(0 < \alpha < 1\), does it follow that \(\psi\) is a Riemann map between simply connected domains?

(3) ([Cow2, Question 3]) More generally, for which \(f \in H^\infty\) is there \(\lambda\), \(0 < \lambda < 1\) with \(T_f + \lambda\bar{f}\) subnormal?

After Theorem 2.3, one turned their attentions to hyponormality of Toeplitz operators. The hyponormality of Toeplitz operators has been studied by M. Abramamse [Ab], C. Cowen [Cow1],[Cow2], P. Fan [Fa1], C. Gu [Gu], T. Ito and T. Wong [ItW], T. Nakazi and K. Takahashi [NaT], D. Yu [Yu], K. Zhu [Zhu], D. Farenick, the authors and others (cf. [FL1],[FL2],[CuL1],[HKL1],[HKL2],[KL]).

An elegant theorem of C. Cowen [Cow3] characterizes the hyponormality of a Toeplitz operator \(T_\varphi\) on \(H^2(T)\) by properties of the symbol \(\varphi \in L^\infty(T)\). K. Zhu [Zhu] reformulated Cowen’s criterion and then showed that the hyponormality of \(T_\varphi\) with polynomial symbols \(\varphi\) can be decided by a method based on the classical interpolation theorem of I. Schur [Sch]. We shall use a variant of Cowen’s theorem [Cow3] that was first proposed by Nakazi and Takahashi [NaT].

Cowen’s Theorem. Suppose \(\varphi \in L^\infty(T)\) is arbitrary and write

\[
\mathcal{E}(\varphi) = \{ k \in H^\infty(T) : ||k||_\infty \leq 1 \ \text{and} \ \varphi - k\varphi \in H^\infty(T) \}.
\]

Then \(T_\varphi\) is hyponormal if and only if the set \(\mathcal{E}(\varphi)\) is nonempty.

On the other hand, the Bram-Halmos criterion for subnormality states that an operator \(T\) is subnormal if and only if

\[
\sum_{i,j}(T^i x_j, T^j x_i) \geq 0
\]

for all finite collections \(x_0, x_1, \cdots, x_k \in \mathcal{H}\) ([Br],[Con, II.1.9]). Using the Choleski algorithm for operator matrices, it is easy to see that this is equivalent to the following positivity test:

\[
\begin{pmatrix}
I & T & T^2 & \cdots & T^k \\
T & T^2 & T^3 & \cdots & T^k T \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
T^k & T^k T & \cdots & T^k T^k
\end{pmatrix} \geq 0 \quad (\text{all } k \geq 1).
\]
Condition (2.3.1) provides a measure of the gap between hyponormality and subnormality. In fact, the positivity condition (2.3.1) for \( k = 1 \) is equivalent to the hyponormality of \( T \), while subnormality requires the validity of (2.3.1) for all \( k \). If we denote by \([A, B] := AB - BA\) the commutator of two operators \( A \) and \( B \), and if we define \( T \) to be \( k \)-hyponormal whenever the \( k \times k \) operator matrix

\[
M_k(T) := ([T^{*j}, T^i])_{i,j=1}^k
\]

is positive, or equivalently, the \((k+1) \times (k+1)\) operator matrix in (2.3.1) is positive, then the Bram-Halmos criterion can be rephrased as saying that \( T \) is subnormal if and only if \( T \) is \( k \)-hyponormal for every \( k \geq 1 \) ([CMX]). Now it seems to be interesting to understand the gap between \( k \)-hyponormality and subnormality for Toeplitz operators.

In [CuL1], the following was shown:

**Theorem 2.4 ([CuL1]).** Every trigonometric Toeplitz operator whose square is hyponormal must be normal or analytic. Hence, in particular, every 2-hyponormal trigonometric Toeplitz operator is subnormal.

It is well known ([Cu]) that there is a gap between hyponormality and 2-hyponormality for weighted shifts. Theorem 2.4 also shows that there is a big gap between hyponormality and 2-hyponormality for Toeplitz operators. For example, if

\[
\varphi(z) = \sum_{n=-m}^{N} a_n z^n \quad (m < N)
\]

is such that \( T_\varphi \) is hyponormal then by Theorem 2.4, \( T_\varphi \) is never 2-hyponormal because \( T_\varphi \) is neither analytic nor normal (recall that if \( \varphi(z) = \sum_{n=-m}^{N} a_n z^n \) is such that \( T_\varphi \) is normal then \( m = N \) (cf. [FL1]).

We can extend Theorem 2.4. First of all we observe:

**Proposition 2.5 ([CuL2]).** If \( T \in \mathcal{L}(\mathcal{H}) \) is 2-hyponormal then

\[
(T(\ker[T^*,T]) \subseteq \ker[T^*,T].
\]

**Proof.** Suppose that \([T^*,T]f = 0\). Since \( T \) is 2-hyponormal, it follows from (2.3.2) that (cf. [CMX, Lemma 1.4])

\[
|([T^*f, T^*g])|^2 \leq ([T^*, T]f, f)([T^*g, T]g, g) \quad \text{for all } g \in \mathcal{H}.
\]

By assumption, we have that for all \( g \in \mathcal{H}, 0 = ([T^*f, T]g, f) = (g, [T^*f, T]^*f) = (g, T^*f, f) = T^*f, f \). Therefore,

\[
[T^*, T]f = (T^*T^2 - TT^*T)f = (T^2T^* - TT^*T)f = T[T^*, T]f = 0,
\]

which proves (2.5.1). \(\square\)

**Corollary 2.6.** If \( T_\varphi \) is 2-hyponormal and if \( \varphi \) or \( \overline{\varphi} \) is of bounded type then \( T_\varphi \) is normal or analytic, so that \( T_\varphi \) is subnormal.

**Proof.** This follows at once from Theorem 2.1 and Proposition 2.5. \(\square\)
Corollary 2.7. If \( T_\varphi \) is a 2-hyponormal operator such that \( \mathcal{E}(\varphi) \) contains at least two elements then \( T_\varphi \) is normal or analytic, so that \( T_\varphi \) is subnormal.

Proof. This follows from Corollary 2.6 and the fact ([NaT, Proposition 8]) that if \( \mathcal{E}(\varphi) \) contains at least two elements then \( \varphi \) is of bounded type. \( \square \)

From Corollaries 2.6 and 2.7, we can see that if \( T_\varphi \) is 2-hyponormal but not subnormal then \( \varphi \) is not of bounded type and \( \mathcal{E}(\varphi) \) consists of exactly one element.

Theorem 2.8. Let \( T \equiv W_\alpha \) be the weighted shift with weight sequence \( \alpha = \{\alpha_k\}_{k=0}^\infty \)

\[
\alpha_k = \left( \sum_{j=0}^k \alpha_j \right)^{\frac{1}{2}}.
\]

and let \( S := T + \lambda T^\ast \) (\( \lambda \in \mathbb{C} \)). Then we have:

1. \( S \) is hyponormal if and only if \( |\lambda| \leq 1 \);
2. \( S \) is subnormal if and only if \( \lambda = 0 \) or \( |\lambda| = \alpha_k \) for some \( k = 0, 1, 2, \ldots \).

Proof. (1) From a straightforward calculation.

(2) See [Cow1, Theorem 2.3]. \( \square \)

Recall ([At],[CMX],[CoS]) that \( T \in \mathcal{L}(\mathcal{H}) \) is said to be weakly \( k \)-hyponormal if

\[
LS((T, T^2, \ldots, T^k)) := \left\{ \sum_{j=1}^k \alpha_j T^j : \alpha = (\alpha_1, \ldots, \alpha_k) \in \mathbb{C}^k \right\}
\]

consists entirely of hyponormal operators, or equivalently, \( M_k(T) \) is weakly positive, i.e., ([CMX])

\[
(2.8.1) \quad (M_k(T) \begin{pmatrix} \lambda_0 x \\ \vdots \\ \lambda_k x \end{pmatrix}, \begin{pmatrix} \lambda_0 x \\ \vdots \\ \lambda_k x \end{pmatrix}) \geq 0 \quad \text{for } x \in \mathcal{H} \text{ and } \lambda_0, \ldots, \lambda_k \in \mathbb{C}.
\]

If \( k = 2 \) then \( T \) is said to be quadratically hyponormal, and if \( k = 3 \) then \( T \) is said to be cubically hyponormal. Similarly, \( T \in \mathcal{L}(\mathcal{H}) \) is said to be polynomially hyponormal if \( p(T) \) is hyponormal for every polynomial \( p \in \mathbb{C}[z] \). It is known that \( k \)-hyponormal \( \Rightarrow \) weakly \( k \)-hyponormal, but the converse is not true in general. The classes of (weakly) \( k \)-hyponormal operators have been studied in an attempt to bridge the gap between subnormality and hyponormality ([Cu1],[Cu2],[CF1],[CF2],[CF3],[CuL1],[CMX],[DPY],[McCP]). The study of this gap has been only partially successful. For example, such a gap is not yet well described for Toeplitz operators on the Hardy space of the unit circle: in fact, even subnormality for Toeplitz operators has not yet been characterized (cf. [Ha1],[Cow2]). For weighted shifts, positive results appear in [Cu1] and [CF3], although no concrete example of a weighted shift which is polynomially hyponormal but not subnormal has yet been found (the existence of such weighted shifts was established in [CP1] and [CP2]).

Thus the following problem seems to be interesting:
Problem 4.  
(1) Let \( S \) be defined as in Theorem 2.8. Find a necessary and sufficient condition in terms of \( \lambda \) for \( S \) to be (weakly) \( k \)-hyponormal. 
(2) Make an analogue theory with the Bergman shift \( T \) or a recursively generated weighted shift \( T \) and an operator \( S_\lambda \) in place of \( T \) and \( T + \lambda T^* \) in Theorem 2.8.

Also in \([\text{Cow1}]\) the following was established:

Theorem 2.9 (\([\text{Cow1}]\)). Let \( 0 < \alpha < 1 \) be given and let \( \psi \) be a Riemann map of the unit disk onto the interior of the ellipse with vertices \( \pm (1 + \alpha)i \) and passing through \( \pm (1 - \alpha) \). Let \( \varphi = \psi + \alpha \bar{\psi} \) and let \( T_\varphi \) be the corresponding Toeplitz operator on \( H^2 \). Then

(i) \( T_\varphi \) is hyponormal if and only if \( |\lambda| \leq 1 \);
(ii) \( T_\varphi \) is subnormal if and only if

\[
\lambda = \alpha \quad \text{or} \quad \lambda = \frac{\alpha^k e^{i\theta} + \alpha}{1 + \alpha^{k+1} e^{i\theta}} \quad (k = 0, 1, 2, \cdots; 0 \leq \theta < \pi).
\]

Problem 5. Let \( T_\varphi \) be defined as in Theorem 2.9. Find a necessary and sufficient condition in terms of \( \lambda \) for \( T_\varphi \) to be (weakly) \( k \)-hyponormal.

§3. Self-commutators of Toeplitz Operators

In \([\text{AIW}]\) it was shown that every subnormal Toeplitz operator with rank-one self-commutator is a linear function of some inner function \( \chi \), where \( \chi(z) = \frac{z - \alpha}{1 - \bar{\alpha}z} \) for some \( |\alpha| < 1 \). Also K. Clancy has shown that every pure subnormal operator with rank-one self-commutator is a linear function of the unilateral shift (cf. Indiana Univ. Math. J. 23 (1973)). Also, in \([\text{CuL2}]\) it was shown that every pure 2-hyponormal operator with rank-one self-commutator is a linear function of the unilateral shift. McCarthy and Yang \([\text{McCYa}]\) classified all rationally cyclic subnormal operators with finite rank self-commutators. However it remains still open what are the pure subnormal operators with finite rank self-commutators.

Now the following question comes up at once:

Problem 6. If \( T_\varphi \) is a 2-hyponormal Toeplitz operator with nonzero finite rank self-commutator, does it follow that \( T_\varphi \) is analytic?

For affirmativity to Problem 6 we shall give a partial answer. To do this we recall Theorem 15 in \([\text{NaT}]\) which states that if \( T_\varphi \) is subnormal and \( \varphi = q\bar{\varphi} \), where \( q \) is a finite Blaschke product then \( T_\varphi \) is normal or analytic. But from a careful examination of the proof of the theorem we can see that its proof uses subnormality assumption only for the fact that \( \ker [T_\varphi^*, T_\varphi] \) is invariant under \( T_\varphi \). Thus in view of Proposition 2.5, the theorem is still valid for “2–hyponormal” in place of “subnormal”. We thus have:

Theorem 3.1 (\([\text{CuL4}]\)). If \( T_\varphi \) is 2-hyponormal and \( \varphi = q\bar{\varphi} \), where \( q \) is a finite Blaschke product then \( T_\varphi \) is normal or analytic.

We now give a partial answer to Problem 6.
Theorem 3.2 ([CuL4]). Suppose $\log |\varphi|$ is not integrable. If $T_\varphi$ is a 2–hyponormal operator with nonzero finite rank self-commutator then $T_\varphi$ is analytic.

Proof. If $T_\varphi$ is hyponormal such that $\log |\varphi|$ is not integrable then by an argument of [NaT, Theorem 4], $\varphi = q\hat{\varphi}$ for some inner function $q$. Also if $T_\varphi$ has a finite rank self-commutator then by [NaT, Theorem 10], there exists a finite Blaschke product $b \in \mathcal{E}(\varphi)$. If $q \neq b$, so that $\mathcal{E}(\varphi)$ contains at least two elements, then by Corollary 2.7, $T_\varphi$ is normal or analytic. If instead $q = b$ then by Theorem 3.1, $T_\varphi$ is also normal or analytic. 

Theorem 3.2 reduces Problem 6 to the class of Toeplitz operators such that $\log |\varphi|$ is integrable. If $\log |\varphi|$ is integrable then there exists an outer function $e$ such that $|\varphi| = |e|$. Thus we may write $\varphi = ue$, where $u$ is a unimodular function. Since by the Douglas-Rudin theorem (cf. [Ga, p.192]), every unimodular function can be approximated by quotients of inner functions, it follows that if $\log |\varphi|$ is integrable then $\varphi$ can be approximated by functions of bounded type. Therefore if we could obtain such a sequence $\psi_n$ converging to $\varphi$ such that $T_{\psi_n}$ is 2–hyponormal with finite rank self-commutator for each $n$, then we would answer Problem 6 affirmatively. On the other hand, if $T_\varphi$ attains its norm then by a result of Brown and Douglas [BD], $\varphi$ is of the form $\varphi = \lambda \frac{e}{\theta}$ with $\lambda > 0$, $\psi$ and $\theta$ inner. Thus $\varphi$ is of bounded type. Therefore by Corollary 2.7, if $T_\varphi$ is 2–hyponormal and attains its norm then $T_\varphi$ is normal or analytic. However we were not able to decide that if $T_\varphi$ is a 2–hyponormal operator with finite rank self-commutator then $T_\varphi$ attains its norm.

§4. Hyponormality of Toeplitz Operators

Nakazi and Takahashi [NaT, Corollary 5] showed that if $\varphi(z) = \sum_{n=-m}^{N} a_n z^n$ is a trigonometric polynomial with $m \leq N$ and if for every zero $\zeta$ of $z^m \varphi$ such that $|\zeta| > 1$, the number $1/\zeta$ is a zero of $z^m \varphi$ in the open unit disk $D$ of multiplicity greater than or equal to the multiplicity of $\zeta$, then $T_\varphi$ is hyponormal. But the converse is not true in general. To see this consider the following trigonometric polynomial: $\varphi(z) = z^{-2}(z - 2)(z - 1)(z - \frac{1}{2})(z - \frac{1}{4})$. Then $\varphi(z) = \frac{25}{12}z^{-2} - \frac{13}{12}z^{-1} + \frac{5}{12}z - \frac{5}{12}z + z^2$. Using an argument of P. Fan [Fa1, Theorem 1] – for every trigonometric polynomial $\varphi$ of the form $\varphi(z) = \sum_{n=-2}^{2} a_n z^n$, 

$$T_\varphi \text{ is hyponormal } \iff \det \left( \begin{array}{cc} a_{-1} & a_{-2} \\ a_1 & a_2 \end{array} \right) \leq |a_2|^2 - |a_{-2}|^2,$$

a straightforward calculation shows that $T_\varphi$ is hyponormal. In [HKL1] it was considered how the converse of the above result due to Nakazi and Takahashi survives for arbitrary trigonometric polynomials. The main result of [HKL1] is as follows. Suppose $\varphi(z) = \sum_{n=-m}^{N} a_n z^n$ with $m \leq N$ and write 

$$\mathcal{F} := \{ \zeta, 1/\zeta : \text{ the complex numbers } \zeta \text{ and } 1/\zeta \text{ are zeros of } z^m \varphi \}.$$

If $\mathcal{F}$ contains at least $(N + 1)$ elements then the following statements are equivalent.

(i) $T_\varphi$ is a hyponormal operator.

(ii) For every zero $\zeta$ of $z^m \varphi$ such that $|\zeta| > 1$, the number $1/\zeta$ is a zero of $z^m \varphi$ in the open unit disk $D$ of multiplicity greater than or equal to the multiplicity of $\zeta$. 

Woo Young Lee
Moreover, in the cases where $T_{\varphi}$ is a hyponormal operator, the rank of the selfcommutator of $T_{\varphi}$ is computed from the formula $\text{rank } [T_{\varphi}^*, T_{\varphi}] = N - m + Z_D - Z_{C \setminus D}$, where $Z_D$ and $Z_{C \setminus D}$ are the number of zeros of $z^m \varphi$ in $\mathbb{D}$ and in $\mathbb{C} \setminus \overline{\mathbb{D}}$ counting multiplicity.

The above result can be easily applied for Toeplitz operators with polynomial and circulant-type symbols (cf. [FL2]). The crucial point for the converse of Nakazi-Takahashi Theorem is to find the classes $\varphi$ such that $T_{\varphi}$ is hyponormal if and only if $\varphi = k\overline{\varphi}$ for some $k \in \mathcal{E}(\varphi)$. For example, if $\log |\varphi|$ is not integrable, then $\varphi$ belongs to that class (cf. [NaT, Theorem 4]). However, if $\varphi$ is a trigonometric polynomial then $\log |\varphi|$ is integrable. Thus the above result can not be applied for trigonometric Toeplitz operators. We now have:

**Problem 7.** Let $\varphi(z) = \sum_{n=-m}^{N} a_n z^n$. Find the classes of $\varphi$ satisfying

(i) $T_{\varphi}$ is a hyponormal operator.
(ii) For every zero $\zeta$ of $z^m \varphi$ such that $|\zeta| > 1$, the number $1/\zeta$ is a zero of $z^m \varphi$ in the open unit disk $\mathbb{D}$ of multiplicity greater than or equal to the multiplicity of $\zeta$.

§5. $p$-Hyponormality of Toeplitz Operators

An operator $T$ is called $p$-hyponormal (cf. [Xi]) if $(T^*T)^p - (TT^*)^p \geq 0$. If $p = 1$, $T$ is hyponormal and if $p = \frac{1}{2}$, $T$ is semi-hyponormal. There are many examples which provide a gap between $p$-hyponormality and hyponormality. But $p$-hyponormality and hyponormality coincide for weighted shifts. One might also guess that every $p$-hyponormal Toeplitz operator is hyponormal. We have not yet found a counter example.

**Problem 8.** Is every $p$-hyponormal Toeplitz operator hyponormal?

As a strategy try with $U^* + \alpha U$.
As a related problem, we have: Find an example of an operator $T$ such that $T$ is $p$-hyponormal but $T - \lambda$ is not $p$-hyponormal for some $\lambda$. Here is a strategy.

Try with an example of Cho and Jin [ChJ]: on $M_2(\mathbb{C}) \otimes \ell_2(\mathbb{Z})$,

$$
T := \begin{pmatrix}
\ddots & \\
\ddots & 0 & C & 0 & \ddots & \ddots & \ddots & \\
\ddots & C & 0 & \ddots & \ddots & \ddots & \ddots & \\
\ddots & \ddots & C & 0 & \ddots & \ddots & \ddots & \\
\ddots & \ddots & \ddots & D & 0 & \ddots & \ddots & \\
\ddots & \ddots & \ddots & \ddots & D & 0 & \ddots & \\
\ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
\end{pmatrix}
$$

with some $C, D \in M_2(\mathbb{C})$.

Cho and Jin gave an example of a semi-hyponormal non-quasihyponormal operator with $C = \begin{pmatrix} 2 & 0 \\
0 & 1 \end{pmatrix}$ and $D = \begin{pmatrix} 3 & 1 \\
1 & 2 \end{pmatrix}$. Also M.Y. Lee and S.H. Lee gave an example of a semi-hyponormal non-$s$-paranormal operator with $C = \begin{pmatrix} 4 & 2 \\
2 & 1 \end{pmatrix}$ and $D = \begin{pmatrix} 5 & 4 \\
4 & 5 \end{pmatrix}$.
§6. Hyponormality of Block Toeplitz Operators

It is very complicated to determine the hyponormality of the block Toeplitz operators $T_{\Phi} (\Phi \in L^\infty \otimes M_n)$, i.e.,

$$T_{\Phi} = \begin{pmatrix} A_0 & A_{-1} & A_{-2} & \cdots & \cdots \\ A_1 & A_0 & A_{-1} & A_{-2} & \cdots \\ \vdots & A_2 & A_1 & A_0 & \ddots \\ \vdots & \vdots & \vdots & \ddots & \ddots \end{pmatrix} = \begin{pmatrix} T_{\varphi_{11}} & T_{\varphi_{12}} & \cdots & T_{\varphi_{1n}} \\ T_{\varphi_{21}} & T_{\varphi_{22}} & \cdots & T_{\varphi_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ T_{\varphi_{n1}} & T_{\varphi_{n2}} & \cdots & T_{\varphi_{nn}} \end{pmatrix}.$$ 

Any criterion for hyponormality of $T_{\Phi}$ have not been found yet. We first consider a problem to determine the hyponormality of the block Toeplitz operator of the following form

$$(6.0.1) \begin{pmatrix} a_0A & a_{-1}A & a_{-2}A & \cdots & \cdots \\ a_1A & a_0A & a_{-1}A & a_{-2}A & \cdots \\ a_2A & a_1A & a_0A & a_{-1}A & \ddots \\ \vdots & a_2A & a_1A & a_0A & \ddots \end{pmatrix},$$

where $A$ is a $n \times n$ matrix. Thus (6.0.1) is the operator $T_{\varphi} \otimes A$, where $\varphi \in L^\infty(\mathbb{T})$ has the Fourier series expansion $\varphi(z) = \sum_{n=-\infty}^{\infty} a_n z^n$.

Our criterion for hyponormality of $T_{\varphi} \otimes A$ is as follows.

**Theorem 6.1.** If $\varphi \in L^\infty(\mathbb{T})$ and $A \in M_n$, then the following are equivalent:

(i) $T_{\varphi} \otimes A$ is hyponormal;

(ii) $T_{\varphi}$ is hyponormal and $A$ is normal.

**Proof.** Observe

$$(6.1.1) \quad [(T_{\varphi} \otimes A)^*, (T_{\varphi} \otimes A)] = T_{\varphi}^* T_{\varphi} \otimes [A^*, A] + [T_{\varphi}^*, T_{\varphi}] \otimes AA^*.$$ 

Thus if $A$ is normal and $T_{\varphi}$ is hyponormal then

$$[(T_{\varphi} \otimes A)^*, (T_{\varphi} \otimes A)] = [T_{\varphi}^*, T_{\varphi}] \otimes AA^* \geq 0,$$

which gives (ii) $\Rightarrow$ (i). For the implication (i) $\Rightarrow$ (ii), let $P_m$ be the orthogonal projection of $H^2(\mathbb{T})$ onto $\bigvee \{e_0, \cdots, e_{m-1}\}$. If $S \in \mathcal{L}(H^2)$ then $P_m U^* S U^m P_m$ represents a $m \times m$ principal submatrix consisting $\{m, \cdots, 2m-1\}$ columns of the matrix of $S$. Thus if $S \geq 0$ then $P_m U^* S U^m P_m \geq 0$ for every $m = 0, 1, \cdots$. On the other hand, a straightforward calculation shows that

$$\alpha_m := (T_{\varphi}^* T_{\varphi}^* e_m, e_m) = \sum_{k=m+1}^{\infty} (|a_k|^2 - |a_{-k}|^2)$$

and

$$\beta_m := (T_{\varphi}^* T_{\varphi} e_m, e_m) = \sum_{k=-m}^{\infty} |a_k|^2.$$
Thus \( \{ \beta_m \} \) is a monotonically increasing sequence of positive numbers. Since \( \| \varphi \|_\infty \geq \| \varphi \|_2 \), it follows that \( \alpha_m \to 0 \) as \( m \to \infty \). Observe

\[
P_{mn} U^{mn} [(T_\varphi \otimes A)^*, (T_\varphi \otimes A)] U^{mn} P_{mn} = \beta_m [A^*, A] + \alpha_m (AA^*) \geq 0 \quad \text{for every } m = 0, 1, 2 \cdots .
\]

Assume to the contrary that there exists \( x \in \mathbb{C}^n \) with \( \| x \| = 1 \) such that \( ([A^*, A]x, x) < 0 \). But then

\[
(6.1.2) \quad \beta_m ([A^*, A]x, x) \geq -\alpha_m \| A^* x \|^2.
\]

Letting \( m \to \infty \), we have a contradiction because the right-hand side of (6.1.2) converges to 0, while the left-hand side is negative and monotonically decreasing. Therefore we should have that \( [A^*, A] \geq 0 \), which implies that \( A \) is normal. Therefore from (6.1.1) we have

\[
[(T_\varphi \otimes A)^*, (T_\varphi \otimes A)] = [T_\varphi^*, T_\varphi] \otimes AA^* \geq 0,
\]

which implies that \( [T_\varphi^*, T_\varphi] \geq 0 \), i.e., \( T_\varphi \) is hyponormal. \qed

**Example 6.2.** Consider the following operator on \( \ell_2 \):

\[
T = \begin{pmatrix}
0 & 0 & 0 & 0 & \cdots \\
0 & 1 & i & 0 & \cdots \\
i & 1 & 0 & 0 & \cdots \\
0 & 0 & 1 & i & 0 & \cdots \\
0 & i & 1 & 0 & 0 & \cdots \\
0 & 0 & 1 & i & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots & \ddots 
\end{pmatrix}
\]

Then \( T = \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix} \otimes U \), so that by Theorem 7.1, \( T \) is hyponormal.

To determine the hyponormality of \( T_\Phi \) (\( \Phi \in L^\infty \otimes M_n \)), one might mimic the Cowen’s theorem; i.e., \( T_\Phi \) is hyponormal if and only if

\[
\mathcal{E}(\Phi) := \{ K \in H^\infty \otimes M_n : \Phi - K \Phi^* \in H^\infty \otimes M_n \text{ and } \| K \| = 1 \}
\]

is nonempty. But this fails. For example, if \( \varphi \in H^\infty(\mathbb{T}) \), put

\[
\Phi = \begin{pmatrix} \varphi & \bar{\varphi} \\ 0 & \varphi \end{pmatrix} \quad \text{and} \quad K = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.
\]

Then

\[
\Phi - K\Phi^* = \begin{pmatrix} \varphi & \bar{\varphi} \\ 0 & \varphi \end{pmatrix} - \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \bar{\varphi} & 0 \\ \varphi & \varphi \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in H^\infty \otimes M_2.
\]
But since 
\[ [T_\Phi^*, T_\Phi] = \begin{pmatrix} T_\Phi & 0 \\ 0 & T_\Phi^* \end{pmatrix} - \begin{pmatrix} T_\Phi^* & 0 \\ 0 & T_\Phi \end{pmatrix} = \begin{pmatrix} -T_\Phi^* T_\Phi & 0 \\ 0 & T_\Phi^* T_\Phi \end{pmatrix}, \]
it follows that \( T_\Phi \) is not hyponormal if \( \varphi \neq 0 \).

For another example, consider
\[ \Phi = \begin{pmatrix} i \\ 1 \\ 1 \end{pmatrix} \quad \text{and} \quad K = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}. \]
Then
\[ \Phi - K \Phi^* = \begin{pmatrix} 0 & 2 \\ 2 & 2 \end{pmatrix} \in H^\infty \otimes M_2. \]

But since
\[ [T_\Phi^*, T_\Phi] = \begin{pmatrix} 0 & -2i \\ 2i & 0 \end{pmatrix}, \]
and hence \( \sigma([T_\Phi^*, T_\Phi]) = \{-2, 2\} \) it follows that \( T_\Phi \) is not hyponormal.

We now have:

**Problem 9.** Determine the hyponormality of block Toeplitz operators \( T_\Phi \) \((\Phi \in L^\infty \otimes M_n)\).

§7. Spectral Properties of Toeplitz Operators

Recall that \( T \in \mathcal{L}(\mathcal{H}) \) is called a von-Neumann operator if \( \sigma(T) \) is a spectral set for \( T \). It is well-known that \( T \) is a von-Neumann operator if and only if \( q(T) \) is normaloid (i.e., norm equals spectral radius) for every rational function \( q \) with poles outside \( \sigma(T) \). Thus if \( T \) is rationally hyponormal, i.e., \( q(T) \) is hyponormal for every rational function \( q \) with poles outside \( \sigma(T) \), then \( T \) is a von-Neumann operator.

On the other hand, although the existence of a non-subnormal polynomially hyponormal weighted shift was established in [CP1] and [CP2], it is still open whether the implication “polynomially hyponormal \( \Rightarrow \) subnormal” can be disproved with a Toeplitz operator.

**Problem 10.**
1. Does there exist a Toeplitz operator that is polynomially hyponormal but not subnormal?
2. Is every polynomially hyponormal Toeplitz operator rationally hyponormal?
3. Is every Toeplitz operator a von-Neumann operator?

**Remark.** As we mentioned above, Curto and Putinar [CP1], [CP2] shows that there exists an operator that is polynomially hyponormal but not 2-hyponormal (and hence not subnormal). McCarthy and Yang [McCYa] also showed that there exists an operator that is polynomially hyponormal but not subnormal if and only if there exists a weighted shift that is polynomially hyponormal but not subnormal. Consequently, combining two results shows that there exists a weighted shift that is polynomially hyponormal but not subnormal. However such weighted shifts have not been yet found even though they exist.

We thus have:
Problem 10 – Re1. Find a weighted shift that is polynomially hyponormal but not subnormal.

Also it is still open whether the implication “polynomially hyponormal \(\Rightarrow\) 2-hyponormal” can be disproved with a weighted shift. We thus have:

Problem 10 – Re2. Is there a weighted shift that is polynomially hyponormal but not 2-hyponormal?

As related problems, Curto and Putinar [CP2] raised the following problems:

Problem 10 – Re3.
1. Are the classes of polynomially hyponormal, rationally (with \(n\) distinct poles) hyponormal, and analytically hyponormal operators all different?
2. Classify the polynomially hyponormal operators with finite rank self-commutator.
3. What is the dilation and extension theory for polynomially hyponormal operators?
4. Is there an analogue of Berger’s theorem for polynomially hyponormal weighted shifts? Alternatively, is there a matricial characterization of polynomial hyponormality for weighted shifts which parallels one for subnormal shifts?

Let \(K\) denote the set, equipped with the Hausdorff metric, of all compact subsets of \(\mathbb{C}\). If \(\mathfrak{A}\) is a unital Banach algebra then the function \(\sigma : \mathfrak{A} \to K\) that maps each \(T \in \mathfrak{A}\) to its spectrum \(\sigma(T)\) is upper semicontinuous. In noncommutative algebras we generally have points at which the spectrum is not continuous. The work of Newburgh [New] contains the fundamental results on spectral continuity in general Banach algebras. J. Conway and B. Morrel [CoM] have undertaken a detailed study of spectral continuity in the case where the Banach algebra is the \(C^*\)-algebra of all operators acting on a complex separable Hilbert space. It is known that when restricting the spectrum to certain subsets, the spectrum becomes a continuous function on the set. The set of normal operators is perhaps the most immediate of such results ([New], [Ha3, Solution 105]). Recently, this result was extended for the set of \(p\)-hyponormal operators ([HL2]). Also in [FL1] and [HL1], the continuity of the spectrum was considered when the function is restricted to certain subsets of Toeplitz operators. Very recently, in [BGS], it was shown that the spectrum is discontinuous on the entire manifold of Toeplitz operators. In spite of this result, the following is still a challenging and interesting problem.

Problem 11. Identify subsets \(\mathfrak{S}\) of \(L^\infty(\mathbb{T})\) for which the spectrum of Toeplitz operators with symbols in \(\mathfrak{S}\) is continuous.

If \(T \in \mathcal{L}(\mathcal{H}, \mathcal{K})\) then the reduced minimum modulus of \(T\) is defined by (cf. [Ap])

\[
\gamma(T) = \begin{cases} 
\inf \{\|Tx\| : \dist(x, N(T)) = 1\} & \text{if } T \neq 0 \\
0 & \text{if } T = 0.
\end{cases}
\]

Thus \(\gamma(T) > 0\) if and only if \(T\) has closed nonzero range (cf. [Ap], [Go]). If \(T \in \mathcal{L}(\mathcal{H})\) is a non-zero operator then we can see (cf. [Ap]) that \(\gamma(T) = \inf(\sigma(|T|)) \setminus \{0\}\), where \(|T|\) denotes \((T^*T)^{\frac{1}{2}}\). Thus we have that \(\gamma(T) = \gamma(T^*)\). The reduced minimum modulus of an invertible operator is often the distance from 0 to its spectrum. For example this is the case for hyponormal operators.

We would like to pose:
Sub-Problem. Find the subset $\mathcal{S}$ of $L^\infty(T)$ such that if $\varphi \in \mathcal{S}$ then

(7.0.1) \[ \text{dist} \left( \lambda, \sigma(T_\varphi) \right) = \gamma(T_\varphi - \lambda) \quad \text{for every } \lambda \notin \sigma(T_\varphi). \]

For example, (7.0.1) holds for every hyponormal operator $T \in \mathcal{L}(\mathcal{H})$ in place of $T_\varphi$; for if $T$ is an invertible hyponormal operator then since $T^{-1}$ is also hyponormal it follows

\[ \gamma(T) = \frac{1}{||T^{-1}||} = \frac{1}{\max_{\lambda \in \sigma(T)} |\frac{1}{\lambda}|} = \min_{\lambda \in \sigma(T)} |\lambda| = \text{dist} \left( 0, \sigma(T) \right). \]

However (7.0.1) is not true for $T \in \mathcal{L}(\mathcal{H})$ in general; in fact (7.0.1) fails for even finite dimensional operators. For example if $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, then $\gamma(T) = \frac{\sqrt{2} - 1}{2}$, while $\text{dist} \left( 0, \sigma(T) \right) = 1$.

**Proposition 7.1.** If $\mathcal{S}$ is a subset of $L^\infty$ satisfying (7.0.1) then the restriction of the spectrum $\sigma$ to the set of Toeplitz operators with symbols in $\mathcal{S}$ is continuous.

**Proof.** If $\{T_n\}$ is a sequence of elements in a unital Banach algebra $\mathfrak{A}$, then $\liminf_n \sigma \left( T_n \right)$ is the set of all limit points of convergent sequences of the form $\{\lambda_n\}$, where $\lambda_n \in \sigma(T_n)$ for each $n$. Because the set of invertible elements in $\mathfrak{A}$ is open, we conclude that $\liminf_n \sigma(T_n) \subseteq \sigma(T)$ whenever the sequence of elements $T_n$ converges to $T$ in $\mathfrak{A}$. Therefore proving the spectral continuity is to show equality in this relation.

Suppose that $\varphi, \varphi_n \in \mathcal{S}$, for $n \in \mathbb{Z}^+$, are such that $T_{\varphi_n}$ converges to $T_\varphi$ in norm. It suffices to show that $\sigma(T_{\varphi_n}) \subseteq \liminf \sigma(T_{\varphi_n})$. Assume $\lambda \notin \liminf \sigma(T_{\varphi_n})$. Then there exists a neighborhood $N(\lambda)$ of $\lambda$ such that does not intersect infinitely many $\sigma(T_{\varphi_n})$. Thus we can choose a subsequence $\{\varphi_{n_k}\}$ of $\{\varphi_n\}$ such that for some $\epsilon > 0$, $\text{dist} \left( \lambda, \sigma(T_{\varphi_{n_k}}) \right) > \epsilon$ for all $k \in \mathbb{Z}^+$. Then by (7.0.1), $\gamma(T_{\varphi_{n_k}} - \lambda) > \epsilon$ for all $k \in \mathbb{Z}^+$. Since $\gamma$ is continuous at every Toeplitz operator we must have that $\gamma(T_{\varphi_n} - \lambda) \geq \epsilon$, which implies that $T_{\varphi_n} - \lambda$ has closed range. Since by Coburn’s theorem, either $T_{\varphi_n} - \lambda$ or $(T_{\varphi_n} - \lambda)^*$ is one-one we have that $T_{\varphi_n} - \lambda$ is semi-Fredholm. Therefore by the continuity of the (semi-Fredholm) index, $\text{ind} \left( T_{\varphi_n} - \lambda \right) = \lim_{k \to \infty} \text{ind} \left( T_{\varphi_{n_k}} - \lambda \right) = 0$, which implies that $T_{\varphi_n} - \lambda$ is Fredholm of index zero. Therefore $\lambda \notin \sigma(T_{\varphi_n})$. This completes the proof. \(\square\)

**REFERENCES**


[CuL2] ______, *Towards a model theory for 2-hyponormal operators* (Integral Equations Operator Theory (to appear).).


[CuL4] ______, *Subnormality and k-hyponormality of Toeplitz operators: A brief survey and open questions* (Banach Center Publication (to appear)).


Department of Mathematics, SungKyunKwan University, Suwon 440-746, Korea
E-mail address: wylee@yurim.skku.ac.kr