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A CAUCHY PROBLEM OF SINE-GORDON EQUATIONS WITH
NON-HOMOGENEOUS DIRICHLET BOUNDARY CONDITIONS

JUN-HONG HA

Abstract. In this paper we will establish existence, uniqueness and continu-
ous dependence on the data for the damped sine-Gordon equations with non-
homogeneous Dirichlet boundary conditions in a weaker sense.

1. INTRODUCTION

Let Ω be an open bounded subset of Rn with a piecewise smooth boundary
Γ = ∂Ω. Let Q = (0, T )×Ω and Σ = (0, T )× Γ. In this paper we will study study
existence, uniqueness and continuous dependence on the initial data for damped
sine-Gordon equations with a non-homogeneous Dirichlet boundary condition:

(1.1)





∂2y

∂t2
+ α

∂y

∂t
− β∆y + γ sin y + hy = f in Q,

y = g on Σ,

y(0, x) = y0(x) and
∂y

∂t
(0, x) = y1(x) in Ω,

where α, β, γ ∈ R, β > 0 are physical constants, h ∈ L∞(0, T ; L∞(Ω)) is a multiplier
function, f is a forcing function, g is a boundary forcing function and y0, y1 are
initial values. This equation describes the dynamics of Josephson junction driven by
a current source by taking into account of damping effect. Also the equation (1.1)
with g = h = 0 is well known as a specific equation which causes chaotic behaviors
in Bishop, Fesser and Lomdahl [2] and Levi [4]. Non-homogeneous boundary value
problems for linear second order evolution equations are studied extensively in Lions
and Magenes [6] and Dautray and Lions [3] through the method of transpositions.
The linear theory has been completed by the above books, but the researches on
nonlinear cases are not sufficient. For nonlinear studies, we can refer the books by
Banks, Smith and Wang [1], Temam [9], Lions [5] and Taylor [8]. Further, many
researches on nonlinear equations are focused on standard boundary conditions, i.e.,
the Dirichlet zero or the Neumann boundary conditions.

For the standard boundary value problems of (1.1) we have proved the exis-
tence and uniqueness of weak solutions in Ha and Nakagiri [7] in abstract evolution
equation setting. However, the method used in [7] cannot be applied to the non-
homogeneous Dirichlet boundary condition case. Therefore we utilize the method of
transposition, or the adjoint isomorphism of equations, and we shall solve the case
of non-homogeneous Dirichlet boundary conditions under weaker assumptions on
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the data than those in [7]. That is, it is our main purpose of this paper to establish a
new well-posedness result for (1.1) with non-homogeneous Dirichlet boundary con-
ditions, by using the method of transposition which is suitably set for our nonlinear
case.

This paper is composed of two parts. In section 2 we explain the classical well-
posedness result for the problem (1.1) with homogeneous boundary conditions.
After applying the transposition method to damped linear equations, we estab-
lish the existence, uniqueness, continuous dependence and regularity of generalized
solutions for the problem (1.1) in section 3.

2. HOMOGENEOUS BOUNDARY CONDITION

In this section we study the following initial and homogeneous boundary value
problem

(2.1)





∂2y

∂t2
+ α

∂y

∂t
− β∆y + γ sin y + hy = f in Q,

y = 0 on Σ,

y(0, x) = y0(x) in Ω and
∂y

∂t
(0, x) = y1(x) in Ω,

where α, γ ∈ R ≡ (−∞,∞), β > 0, ∆ is a Laplacian, h ∈ L∞(0, T ; L∞(Ω)) is a
multiplication function, f is a given forcing function, y0, y1 are initial values. We
shall give the classical well-posedness result for (2.1) under the stronger assumptions
on f and y0, y1.

In order to treat the problem (2.1) in variational formulation, we introduce two
Hilbert spaces H and V by H = L2(Ω) and V = H1

0 (Ω), respectively. We endow
these spaces with the usual inner products and norms

(ψ, φ) =
∫

Ω

ψ(x)φ(x)dx, |ψ| = (ψ, ψ)1/2 for all φ, ψ ∈ L2(Ω),

((ψ, φ)) =
n∑

i=1

∫

Ω

∂

∂xi
ψ(x)

∂

∂xi
φ(x)dx, ‖ψ‖ = ((ψ, ψ))1/2 for all φ, ψ ∈ H1

0 (Ω).

Then the pair (V, H) is a Gelfand triple space with a notation, V ↪→ H ≡ H ′ ↪→
V ′ and V ′ = H−1(Ω), which means that embeddings V ⊂ H and H ⊂ V ′ are
continuous, dense and compact. By 〈·, ·〉 we denote the dual pairing between V ′

and V . To use the variational formulation let us introduce the bilinear form

a(φ, ϕ) =
∫

Ω

∇φ · ∇ϕdx = ((φ, ϕ)) for all φ, ϕ ∈ V = H1
0 (Ω).

Then this form is symmetric, bounded on H1
0 (Ω)×H1

0 (Ω) and coercive, i.e.,

a(φ, φ) ≥ ‖φ‖2 for all φ ∈ H1
0 (Ω).

Then we can define the bounded operator A ∈ L(V, V ′) by the relation a(φ, ψ) =
〈Aφ,ψ〉 and the equation (2.1) is reduced to a damped second order equation in H
of the form

(2.2)





d2y

dt2
+ α

dy

dt
+ βAy + γ sin y + hy = f in (0, T ),

y(0) = y0 ∈ V,
dy

dt
(0) = y1 ∈ H.
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The operator A in (2.2) is an isomorphism from V onto V ′ and it is also considered
as a self-adjoint unbounded operator in H with dense domain D(A) in V and in H,

D(A) = {φ ∈ V : Aφ ∈ H}.
By D′(0, T ; X) we denote the space of distributions from D(Ω) into X, where X

is a Hilbert space. If X = R, D′(0, T ; X) is simply denoted by D′(0, T ). We shall
write g′ = dg

dt , g′′ = d2g
dt2 , of which derivatives are taken in the distribution sense

D′(0, T ; V ). We define the Hilbert space of solutions W (0, T ) by

W (0, T ) = {g|g ∈ L2(0, T ;V ), g′ ∈ L2(0, T ; H), g′′ ∈ L2(0, T ;V ′)}
with the scalar product defined by

(f, g)W =
∫ T

0

((f, g))dt +
∫ T

0

(f ′, g′)dt +
∫ T

0

((f ′′, g′′))V ′dt,

where ((·, ·))V ′ denotes the inner product on V ′.

Definition 2.1. A function y is said to be a weak solution of (2.1) if y ∈ W (0, T )
and y satisfies

〈y′′(·), φ〉+ (αy′(·), φ) + ((βy(·), φ)) + (γ sin y(·), φ) + (h(·)y(·), φ) = (f(·), φ)
for all φ ∈ V in the sense of D′(0, T ),

y(0) = y0, y′(0) = y1.

The following theorem on the existence, uniqueness and regularity of solutions
for (2.1) is proved in Ha and Nakagiri [7].

Theorem 2.2. Let α, γ ∈ R, β > 0, h ∈ L∞(0, T ; L∞(Ω)) and f, y0, y1 be given
satisfying

f ∈ L2(0, T ; L2(Ω)), y0 ∈ H1
0 (Ω), y1 ∈ L2(Ω).

Then the problem (2.1) has a unique weak solution y in W (0, T ) and y has the
regularity

y ∈ C([0, T ]; H1
0 (Ω)), y′ ∈ C([0, T ]; L2(Ω)).

Furthermore we have the estimates:

|y′(t)|2 + ‖y(t)‖2 ≤ c(‖y0‖2 + |y1|2 + ‖f‖2L2(0,T ;L2(Ω))), ∀t ∈ [0, T ],(2.3)

where c is a constant depending only on α, β, γ and ‖h‖L∞(0,T ;L∞(Ω)).

Remark 1. Theorem 2.2 holds true for the problem (2.1) in which the nonlinear
term sin y is replaced by sin(yL + y) for some fixed yL ∈ L2(0, T ; L2(Ω)).

3. NON-HOMOGENEOUS BOUNDARY CONDITION

We consider the following non-homogeneous initial-boundary value problem

(3.1)





∂2y

∂t2
+ α

∂y

∂t
− β∆y + γ sin y + hy = f in Q,

y = g on Σ,

y(x, 0) = y0(x),
∂y

∂t
(x, 0) = y1(x) in Ω.

We want to solve the problem (3.1) under weaker conditions on the data f, g, y0, y1

than those given in Section 2.
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For this, we shall introduce the definition of weak integral solutions for (3.1)
which is suggested by the method of transposition for linear equations which is
studied extensively in Lions and Magenes [6].

First we recall the transposition method for linear equations. Let h̃ ∈ L∞(0, T ; L∞(Ω))
be fixed. By Theorem 2.2 with γ = 0, for each f̃ ∈ L2(0, T ;H) there exists an
unique weak solution φ = φ(f̃) ∈ W (0, T ) of the linear problem

(3.2)
{

φ′′ − αφ′ + βAφ + h̃φ = f̃ in (0, T ),
φ(T ) = φ′(T ) = 0.

Indeed it is easily checked if we consider the time reversion, i.e., ψ(t) = φ(T − t).
Let Xh̃ be the set of all functions φ satisfying (3.2) for each f̃ ∈ L2(0, T ; H). We

also give an inner product on Xh̃ by

((φ(f̃), φ(g̃)))Xh
= ((f̃ , g̃))L2(0,T ;H),

where φ(f̃) denotes the weak solution to (3.2) for a given f̃ . Then it is easily checked
that (Xh̃, ((·, ·))Xh̃

) is a Hilbert space. Hence the mapping Lh̃ : Xh̃ → L2(0, T ;H)
defined by

φ → φ′′ − αφ′ + βAφ + h̃φ

is an isomorphism. Since Xh̃ ⊂ W (0, T ) as a set, we have by (2.3) that

(3.3) ‖L−1

h̃
f̃‖L2(0,T ;V ) + ‖ d

dt
L−1

h̃
f̃‖L2(0,T ;H) ≤ c‖f̃‖L2(0,T ;H), ∃c > 0,

where c depends on ‖h̃‖L∞(0,T ;L∞(Ω)).
For simplicity of notations, we denote X = Xh and L = Lh, where h is the

function given in the equation (2.1). Note that X = Xh̃ in W (0, T ) for any h̃ ∈
L∞(0, T ;L∞(Ω)).

The following theorem is now immediate from the isomorphism φ ∈ X → φ′′ −
αφ′ + βAφ + hφ ∈ L2(0, T ; H).

Theorem 3.1. Let l be a bounded linear functional on X. Then there exists a
unique solution y ∈ L2(0, T ; H) such that

∫ T

0

(y, φ′′ − αφ′ + βAφ + hφ)dt = l(φ), ∀φ ∈ X.(3.4)

Now we give the definition of a weak integral solution of (3.1).

Definition 3.2. We assume h ∈ L∞(0, T ; L∞(Ω)), f ∈ L1(0, T ; V ′), g ∈
L1(0, T ;H

1
2 (Γ)) and y0 ∈ H = L2(Ω), y1 ∈ V ′ = H−1(Ω). A function y is said to

be a weak integral solution of (3.1) if y ∈ L2(0, T ;H) and y satisfies
∫ T

0

(y, φ′′ − αφ′ + βAφ + hφ)dt =
∫ T

0

〈f, φ〉dt− γ

∫ T

0

(sin y, φ)dt

+(αy0, φ(0)) + 〈y1, φ(0)〉 − (y0, φ
′(0))−

∫ T

0

〈g, β
∂φ

∂n
〉Γdt, ∀φ ∈ X,(3.5)

where 〈ψ, φ〉Γ is the duality pairing between H
1
2 (Γ) and H− 1

2 (Γ).

Note that ∂φ
∂n ∈ L2(0, T ; H− 1

2 (Γ)) by φ ∈ X ⊂ W (0, T ). The sum of all terms
of (3.5) excepting the sine term is shown to be a bounded linear functional on X.
Hence, if γ = 0 in Definition 3.2, then the weak integral solution coincides with the
solution by the transposition method in Theorem 3.1.
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We look for the weak integral solution of (3.1) as the sum yL + z of the following
two linear and nonlinear problems:

(3.6)





∂2yL

∂t2
+ α

∂yL

∂t
− β∆yL + hyL = f in Q,

yL = g on Σ,

yL(x, 0) = y0(x),
∂yL

∂t
(x, 0) = y1(x) in Ω.

(3.7)





∂2z

∂t2
+ α

∂z

∂t
− β∆z + γ sin(yL + z) + hz = 0 in Q,

z = 0 on Σ,

z(x, 0) = 0,
∂z

∂t
(x, 0) = 0 in Ω.

Theorem 3.3. Let α, γ ∈ R, β > 0, h ∈ L∞(0, T ;L∞(Ω)) and the data
f, g, y0, y1 be given satisfying

f ∈ L1(0, T ; H−1(Ω)), g ∈ L1(0, T ; H
1
2 (Γ)), y0 ∈ L2(Ω), y1 ∈ H−1(Ω).

Then the equation (3.6) has a unique weak integral solution yL ∈ L2(0, T ; L2(Ω)).
Now we are ready to state our main theorem.
Theorem 3.4. Under the assumptions in Theorem 3.3, there exists a unique

weak integral solution y ∈ L2(0, T ; L2(Ω)) of (3.1). In addition the solution y is
continuously depending on the initial data y0, y1 and forcing and boundary func-
tions f, g.

Remark 2. We can easily extend Theorem 3.4 to general equations in which α
and β∆ are replaced by the differential operators depending on (t, x). Also we can
extend the equations having bounded C1-class nonlinear function terms.
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