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EVALUATION OF THE DEDEKIND ZETA FUNCTIONS AT
s = −1 OF THE SIMPLEST QUARTIC FIELDS

HYUN KWANG KIM AND JUN HO LEE

Abstract. The simplest quartic field was introduced by M. Gras and studied

by A. J. Lazarus. In this paper, we will evaluate the values of the Dedekind zeta

functions at s = −1 of the simplest quartic fields. We first introduce Siegel’s

formula for the values of the Dedekind zeta function of a totally real number

field at negative odd integers, and will apply Siegel’s formula to the simplest

quartic fields. In the second, we will develop basic arithmetic properties of

the simplest quartic fields which will be necessary in our computation. We

will compute the discriminant, ring of integers, and different of the simplest

quartic fields. In the third, we will give a full description for a Siegel lattice

of the simplest quartic fields, and will develop a method of computing sum of

divisor function for ideals. Finally, by combining these results, we compute

the values of the Dedekind zeta function at s = −1 of the simplest quartic

fields.

1. Siegel’s formula

Let K be a totally real number field and ζK(s) the Dedekind zeta function of K.

Siegel[7] developed an ingenious method of evaluating values of the zeta function

of K at negative odd integers by using the finite dimensionality of elliptic modular

forms. However, evaluation of the values of the zeta function by means of Siegel’s

formula requires complicated computations in algebraic number theory, since the

formula involves terminology of algebraic number theory such as norm, trace, and

different of K. The problem of expressing zeta values in terms of elementary func-

tions was first studied by Zagier[8]. Siegel’s formula has been exploited by Zagier

to give an elementary expression for ζK(1 − 2b), where K is a real quadratic field

and b is a positive integer, which involves only rational integers and not algebraic
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numbers or norm of ideals. In [4](resp. [1]), the authors computed the values of the

zeta function of the simplest cubic fields(resp. non-normal totally real cubic fields)

by using Siegel’s formula. In this paper, we will be interested in evaluating zeta

values of a certain class of totally real quartic fields, which are called the simplest

quartic fields. We first introduce Siegel’s formula for the values of the Dedekind

zeta function of a totally real algebraic number field at negative odd integers.

Let K be an algebraic number field and OK the ring of integers of K. For an

ideal I of OK , we define the sum of ideal divisors function σr(I) by

(1) σr(I) =
∑

J|I
NK/Q(J)r,

where J runs over all ideals of OK which divide I. Note that, if K = Q and I = (n),

our definition coincides with the usual sum of divisors function

(2) σr(n) =
∑
d|n
d>0

dr.

Now let K be a totally real algebraic number field. For l, s = 1, 2, . . . , we define

(3) SK
l (2b) =

∑

ν∈δ−1
K

νÀ0
TrK/Q(ν)=l

σ2b−1((ν)δK),

where ν runs over all totally positive elements in the inverse of the different of K

with a given trace l. Later we shall study the sum (3) intensively. At this moment,

we remark that this is a finite sum. We now state Siegel’s formula.

Theorem 1.1. (Siegel [7]) Let b be a natural number, K a totally real algebraic

number field of degree n, and h = 2bn. Then

(4) ζK(1− 2b) = 2n
r∑

l=1

bl(h)SK
l (2b).

The numbers r ≥ 1 and b1(h), . . . , br(h) ∈ Q depend only on h. In particular,

(5) r = dimCMh,

where Mh denotes the space of modular forms of weight h. Thus by a well-known

formula,
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r =





[ h
12 ] if h ≡ 2 (mod 12)

[ h
12 ] + 1 if h ≡/ 2 (mod 12).

Proof. See [7] or [8] ¤

D. Zagier[8] computed the values of bl(h) for 4 ≤ h ≤ 40, and we obtain:

Corollary 1.2. Let K be a totally real quartic number field. Then

(6) ζK(−1) = 24 · 1
480

· SK
1 (2).

2. The simplest quartic fields

Let K be a quartic field defined by the polynomial over Q

Pt(X) = X4 − tX3 − 6X2 + tX + 1,

where t is a natural number such that t2 +16 is not divisible by an odd square. By

[5], it is known that

(i) Pt(X) is irreducible over Q, and

(ii) if ε is a root of Pt(X), then so is ε−1
ε+1 .

Since the matrix [
1 −1

1 1

]

has order 4 in PGL(2,Q), the field K is a totally real cyclic quartic field. K is

called the simplest quartic field. Let G be the Galois group of K and α = α1 be

the largest root of Pt(X). Then G is generated by σ, where σ(α) = α−1
α+1 . Put

α2 = σ(α) =
α− 1
α + 1

, α3 = σ2(α) = − 1
α

, α4 = σ3(α) =
1 + α

1− α
.

By a simple root test, we easily get, for t ≥ 5, that

−2 < α4 < −1 < α3 < 0 < α2 < 1 < t < α1 < t + 1.

Furthermore, we estimate that

α1
∼= t, α2

∼= 1, α3
∼= 0, and α4

∼= −1 for sufficiently large t.

Let k be the unique quadratic field of K/Q, that is, the fixed field of the subgroup

〈σ2〉 of G. Since β = α− 1
α = t+

√
t2+16
2 is invariant under σ2, we have

k = Q(α− 1
α

) = Q(
√

t2 + 16).
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Let Ok be the ring of integers of k, and DK , OK , and δK be the discriminant, ring

of integers, and different of K, respectively. Lazarus[5] computed the discriminant

of K. We also need to compute the ring of integers and different of K. We first

compute the ring of integers.

Proposition 2.1. Let K be the simplest quartic field corresponding to an integer

t. Let OK be the ring of integers of K. Then

OK =





Z⊕ Zα⊕ Zα2 ⊕ Z1+α3

2 if t ≡ 1 (mod 2)

Z⊕ Zα⊕ Z1+α2

2 ⊕ Zα+α3

2 if t ≡ 2 (mod 4)

Z⊕ Zα⊕ Z1+α2

2 ⊕ Z1+α+α2+α3

4 if t ≡ 4 (mod 8)

Z⊕ Zα⊕ Z1+2α−α2

4 ⊕ Z 1+α+α2+α3

4 if t ≡ 0 (mod 8).

To compute the different δK of K, we borrow a theorem from [9].

Theorem 2.2. Let K = Q(u) be a finite extension of Q and F (X) be the minimal

polynomial of u over Q and R = Z[u]. Then OKF ′(u) = CD, where C is the

conductor of OK in R and D is the different of OK .

We now compute the different δK of K.

Theorem 2.3. Let K be the simplest quartic field corresponding to an integer t

and let δK be the different of K. Then

δK =





P ′t (α)
1+α OK if t ≡ 1 (mod 2)

P ′t (α)
2 OK if t ≡ 2 (mod 4)

P ′t (α)
2(1+α)OK if t ≡ 4 (mod 8)
P ′t (α)

4 OK if t ≡ 0 (mod 8).

We summarize the proceeding results in the following table.

DK Ok OK δK

t ≡ 1 (mod 2) (t2 + 16)3 Z[β] 1, α, α2, 1+α3

2

P ′t(α)

1+α
OK

t ≡ 2 (mod 4) 1
4
(t2 + 16)3 Z[ 1

2
β] 1, α, 1+α2

2
, α+α3

2

P ′t(α)

2
OK

t ≡ 4 (mod 8) 1
16

(t2 + 16)3 Z[ 1
2
β] 1, α, 1+α2

2
, 1+α+α2+α3

4

P ′t(α)

2(1+α)
OK

t ≡ 0 (mod 8) 1
64

(t2 + 16)3 Z[ 1
2

+ β
4
] 1, α, 1+2α−α2

4
, 1+α+α2+α3

4

P ′t(α)

4
OK

3. Description of a Siegel lattice

In this section, we first discuss what is needed for the computation of zeta values

by means of Siegel’s formula. Next, we introduce the notion of a Siegel lattice which
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will be important in our computation. Finally, we shall give a full description of a

Siegel lattice for the simplest quartic fields. As a result we will derive a formula for

the number of points in a Siegel lattice.

The essence of Siegel’s formula is that it transforms an infinite series(i.e., the

value of the zeta function) into a finite sum involving SK
l (2b)s, where SK

l (2b) itself

is a finite sum of powers of ideal divisors of an integral ideal (ν)δK where ν runs

over the elements in K which satisfy the conditions described in (3). Therefore the

description of ν’s in K which satisfy the conditions in (3) is of crucial importance in

our computation. This can be accomplished by the notion of a Siegel lattice which

was first introduced in [3].

Let K be a totally real algebraic number field of degree n and SK(or simply S)

be the set of elements in K which satisfy the Siegel’s conditions described in (3).

Fix an integral basis α1, . . . , αn of K. For ν ∈ K, we can write

(7) ν = x1α1 + · · ·+ xnαn,

where xi ∈ Q. Then we have an embedding φ : K −→ Rn given by

(8) φ(ν) = (x1, . . . , xn).

The condition ν ∈ δ−1
K implies that the denominator of xi, i = 1, 2, . . . , n, is

bounded by DK , where DK denotes the discriminant of K. The condition TrK/Q(ν) =

l is equivalent to saying that φ(ν) lies in the hyperplane

(9) a1x1 + · · ·+ anxn = l,

where ai = TrK/Q(αi). Finally the condition ν À 0 becomes n distinct linear

inequalities defined over K in the variables (x1, . . . , xn). Therefore the elements in

SK can be put into one-to-one correspondence with the lattice points in a bounded

(n−1)-dimensional region under φ. We shall call this set(or any set which can be put

into one-to-one correspondence with this set under a suitable linear transformation)

as a Siegel lattice for K and denote it by TK(or simply T ). Notice that equation (3)

expresses SK
l (2b) as a weighted sum of ideal divisor functions over a Siegel lattice.

Hence the description of a Siegel lattice is very important in the computation of

SK
l (2b). First, we consider for the case t ≡ 1 (mod 2).

3.1. t ≡ 1 (mod 2). Let K be the simplest quartic field corresponding to an odd

integer t. Recall that the discriminant DK , ring of integers OK , and different δK

of K are given respectively by

DK = (t2 + 16)3,



68 HYUN KWANG KIM AND JUN HO LEE

OK = Z⊕ Zα⊕ Zα2 ⊕ Z1 + α3

2
,

δK =
P ′t(α)
1 + α

OK = (p + qα + rα2 + sα3)OK ,

where p = t+4
2 , q = − t2−3t+28

2 , r = t2−3t+4
2 , s = − t−4

2 .

Let ν be an element of K. We can write

(10) ν = e + fα + gα2 + hα3, e, f, g, h ∈ Q.

Now suppose that ν satisfies the Siegel’s conditions, i.e.,

(11) ν ∈ δ−1
K , Tr(ν) = l, ν À 0.

1. ν ∈ δ−1
K

Let ν = e + fα + gα2 + hα3, e, f, g, h ∈ Q, be an element of δ−1
K . Since ν ∈ δ−1

K

if and only if ν( t+4
2 − t2−3t+28

2 α + t2−3t+4
2 α2 − t−4

2 α3) ∈ OK , we can write

ν(
t + 4

2
− t2 − 3t + 28

2
α +

t2 − 3t + 4
2

α2 − t− 4
2

α3) =
u

2
+ vα + wα2 +

z

2
α3,

where u, v, w, z ∈ Z and u ≡ z (mod 2). From comparison of coefficient of αi(0 ≤
i ≤ 3), we obtain the following equation:

(12)




t+4
2

t−4
2 − t+4

2 − t−4
2

− t2−3t+28
2

t2−3t+4
2 − t2+3t+4

2 − t2−3t+4
2

t2−3t+4
2 − t2+3t+4

2
t2+3t+28

2 − t2−3t+28
2

− t−4
2

t+4
2

t−4
2

2t2−t+24
2







e

f

g

h




=




u
2

v

w
z
2




.

By solving the system (12), we have

(13)




e

f

g

h




=
1

2D




2t− 3 −3 −1 −1

−t− 17 −t− 3 −t− 3 −t− 1

−3t + 1 −t + 1 −t + 3 −t + 3

3 1 1 3







u
2

v

w
z
2




,

where D = t2 + 16. By an easy calculation, we can write

(14) e =
a

2D
, f =

b

D
, g =

c

D
, h =

d

2D
,

where a, b, c, d are integers. By plugging (14) into (12) and adding the first and

fourth row, we obtain

ta− 8b− 2tc− (t2 + 12)d ≡ 0 (mod 2D).

Since t is odd,

(15) a ≡ d (mod 2).
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Hence, we conclude that

(16) ν = e + fα + gα2 + hα3 =
a

2D
+

b

D
α +

c

D
α2 +

d

2D
α3,

where a, b, c, d are integers such that a ≡ d (mod 2).

2. Tr(ν) = l

If Tr(ν) = l, then

(17) 2a + tb + (t2 + 12)c +
t3 + 15t

2
d = Dl.

From (17),

(18) b = tl − 2(
a + 6c− 8l

t
)− tc− t2 + 15

2
d.

Since t is odd,

(19) a + 6c− 8l ≡ 0 (mod t).

Now we introduce a new variable s by the formula

(20) s =
a + 6c− 8l

t
.

By substitution of (20) into (18), we have

b = tl − 2s− tc− t2 + 15
2

d.

Conversely, if a, b, c, d are integers satisfying (16) and (17), then ν = a
2D + b

Dα +
c
Dα2 + d

2Dα3 ∈ δ−1
K and Tr(ν) = l.

3. ν À 0

Let

S = {ν|ν ∈ δ−1
K , Tr(ν) = l, ν À 0}.

Define

S : S −→ R3

by

S(ν) = (s, c, d).

Note that the condition ν À 0 is equivalent to the fact that

2Dν = a + 2bα + 2cα2 + dα3 À 0,
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where a ≡ d (mod 2). By (17), (18), (20), this condition gives four linear inequalities

in the variables s, c, d defined over K, namely

Pi = (t−4αi)s+2(α2
i − tαi−3)c+(α3

i − (t2 +15)αi)d+(8+2tαi)l > 0 (1 ≤ i ≤ 4),

where s, c, d ∈ Z and s ≡ d (mod 2).

To find all νs which satisfy the Siegel’s conditions is equivalent to find lattice

points (s, c, d) which lie in the interior of the tetrahedron determined by Pi(1 ≤
i ≤ 4) and satisfy s ≡ d (mod 2). Since the tetrahedron is not of ‘good’ shape to

visualize their regularity and symmetry of lattice points, we shall use a subsidiary

transformation T . Define

U : R3 −→ R3

by

U(s, c, d) = (
s + d

2
,
(t + 1)s− 4c + (t + 1)d

4
,
s + 3d

2
) = (x, y, z).

Put

T = U ◦ S.

By the transformation T , to find all νs which satisfy the Siegel’s conditions is

equivalent to find lattice points (x, y, z) which lie in the interior of a tetrahedron

determined by Pi(1 ≤ i ≤ 4), where

Pi(x, y, z) = (−α3
i + (t + 1)α2

i + (3− t)αi − 3)x− 2(α2
i − tαi − 3)y

+(α3
i − (t2 + 11)αi − t)z + (2tαi + 8)l) > 0.

For 1 ≤ i ≤ 4 and {j, k, m} = {1, 2, 3, 4} \ {i}, a long and tedious computation

yields that

− l

αi
is a z-coordinate of the point of intersection of Pj = Pk = Pm = 0.

We summarize the above computation in the following proposition.

Proposition 3.1. Let S be the set of elements in K which satisfy the Siegel’s

conditions described in (3) and T be the set of lattice points in the interior of the

tetrahedron determined by Pi(1 ≤ i ≤ 4). For ν ∈ S, we can write

(21) ν =
a

2D
+

b

D
α +

c

D
α2 +

d

2D
α3, where a, b, c, d ∈ Z.

Then the mapping η : S −→ T given by η(ν) = (x, y, z), where

x =
1
2t

(a + 6c + td− 8l), y =
1
4t
{(t + 1)a + 2(t + 3)c + t(t + 1)d− 8(t + 1)l},

and z =
1
2t

(a + 6c + 3td− 8l),
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gives a one-to-one correspondence between S and T . The inverse mapping τ : T −→
S is given by

τ(x, y, z) = ν =
a

2D
+

b

D
α +

c

D
α2 +

d

2D
α3,

where

a = −3x + 6y − tz + 8l, b =
1
2
(3− t) + ty − 1

2
(t2 + 11)z + tl,

c =
1
2
(t + 1)x− y, d = z − x.

We now describe Galois action on a Siegel lattice. We start with the following

simple observation.

Lemma 3.2. Let K be a totally real Galois extension of Q with Galois group G.

If ν ∈ K satisfies the Siegel’s conditions described in (3), then so does σ(ν) for any

σ ∈ G.

By Proposition 3.1 and Lemma 3.2, the Galois group G = Gal(K/Q) acts on

the set S and S can be put into one-to-one correspondence with a Siegel lattice T .

Therefore, we have the induced Galois action on T . Now we return to the simplest

quartic field case and describe Galois action T .

Proposition 3.3. (Galois action on a Siegel lattice) Let ν satisfy the Siegel’s

conditions and let (x, y, z) be the points corresponding to ν by η in Proposition 3.1.

Then

η(σ(ν)) = (x1, y1, z1),

where

x1 = −2x + y − 1
2
(t + 3)z + tl,

y1 =
1
2
(t− 1)x− 1

2
(t− 1)y +

1
4
(t2 + 3)z,

z1 = x− y +
1
2
(t + 1)z.

Remark 3.4. By a successive application of Proposition 3.3, we have

η(σ2(ν)) = (x2, y2, z2),

where

x2 = 2x + 3z − tl,

y2 = −1
2
(t− 3)x− y − 1

2
(t− 3)z +

1
2
(t2 − t)l,

z2 = −x− 2z + tl,

and

η(σ3(ν)) = (x3, y3, z3),
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where

x3 = −x− y +
1
2
(t− 3)z + tl,

y3 = −x +
1
2
(t− 1)y − 1

4
(t2 − 2t + 9)z + tl,

z3 = y − 1
2
(t− 1).

Proposition 3.5. Let G act on S as in Proposition 3.3. If Tr(ν) = l is odd, then

every G-orbit contains 4 points. In particular, Nl is divisible by 4, where Nl denotes

the number of lattice points in T which corresponds to Tr(ν) = l.

For (x, y, z) ∈ T , by Proposition 3.1, the corresponding ν is given by

ν =
a

2D
+

b

D
α +

c

D
α2 +

d

2D
α3,

where

a = −3x + 6y − tz + 8l, b =
1
2
(3− t) + ty − 1

2
(t2 + 11)z + tl,

c =
1
2
(t + 1)x− y, d = z − x.

Recall that

δK = (
t + 4

2
− t2 − 3t + 28

2
α +

t2 − 3t + 4
2

α2 − t− 4
2

α3)OK .

Then we have

(ν)δK = (s + uα + vα2 + wα3),

where

s = −x

2
+

y

2
− (t− 3)z

4
+

l

2
, u = − (t− 3)x

2
+

(t− 5)y
2

− (t2 − 4t + 3)z
4

+
(t− 7)l

2
,

v =
(t + 1)x

2
− (t + 1)y

2
+

(t2 + 2t + 1)z
4

− (t− 1)l
2

, w = −x

2
+

y

2
− (t + 1)z

4
− l

2
.

Let N(x, y, z; l) denote the norm function NK/Q(s + uα + vα2 + wα3). By an

elementary computation, we obtain

(22) N(x, y, z; l) = f2 + tfg − 4g2,

where f = s2− u2 + v2−w2 + 6(sv− uw) + 4tsw, g = su + uv + vw + t(sv− uw) +

(t2 + 7)sw.

The function N(x, y, z; l) will be useful in description of T . Note that T is the set

of lattice points in (x, y, z)-plane which lies inside of the tetrahedron surrounded by

the planes P1 = 0, P2 = 0, P3 = 0, and P4 = 0; N(x, y, z; l) < 0 if a point (x, y, z)

lies inside the tetrahedron.

Note that each point on the boundary of a tetrahedron moves to a point on an-

other boundary by Galois action. If we can find lattice points near to appropriate
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boundary, then we can find Siegel lattice points by observing movements of con-

jugates of the points. We observe that P3-plane is approximately arranged along

xy-plane. We choose P3-plane and find lattice points near to P3-plane. Next, if

we observe the movement of conjugates of Siegel lattice points in z = 0, then we

can seek for all Siegel lattice points for z = k. Combining these data, we derive a

formula for the number of points in a Siegel lattice.

Theorem 3.6. Let t be an odd natural number such that t2 + 16 is not divisible

by odd square and K be the simplest quartic field corresponding to t. Let N denote

the number of a Siegel lattice for K which corresponds to Tr(ν) = 1. Then we have

N =





12 if t = 1
t3+23t+24

6 if t ≥ 5.

3.2. t ≡ 2 (mod 4). Recall that the discriminant DK , ring of integers OK , and

different δK of K are given respectively by

DK =
1
4
(t2 + 16)3,

OK = Z⊕ Zα⊕ Z1 + α2

2
⊕ Zα + α3

2
,

δK =
P ′t(α)

2
OK = (

t

2
− 6α− 3t

2
α2 + 2α3)OK .

We will compute directly δ−1
K .

Letting D = t2 + 16, by a direct calculation, we obtain

δ−1
K =

1
D
{(2t− 17α− 3tα2 + 3α3)Z⊕ (−3− tα + α2)Z

⊕(t− 10α− 2tα2 + 2α3)Z⊕ (−2− tα + 2α2)Z}
= { 1

D
((2at− 3b + ct− 2d) + (−17a− bt− 10c− dt)α

+(−3at + b− 2ct + 2d)α2 + (3a + 2c)α3)| a, b, c, d ∈ Z}.(23)

If ν ∈ δ−1
K and Tr(ν) = l, then we have d = l. Define

S : S −→ R3

by

S(ν) = (a, b, c + tl) = (x, y, z).
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The condition that ν À 0 gives four linear inequalities in the variables x, y, z defined

over K:

Pi(x, y, z) = (2t− 17αi − 3tα2
i + 3α3

i )x + (−3− tαi + α2
i )y

+(t− 10αi − 2tα2
i + 2α3

i )z + (−(t2 + 2) + 9tαi + 2(t2 + 1)α2
i − 2tα3

i )l > 0

(1 ≤ i ≤ 4).

For 1 ≤ i ≤ 4 and {j, k, m} = {1, 2, 3, 4} \ {i}, We obtain

αil is a z-coordinate of the point of intersection of Pj = Pk = Pm = 0.

We summarize the above computation in the following proposition.

Proposition 3.7. Let S be the set of elements in K which satisfy the Siegel’s

conditions described in (3) and T be the set of lattice points in the interior of the

tetrahedron determined by Pi(1 ≤ i ≤ 4). For ν ∈ S, by (23) we can write

(24) ν =
e

D
+

f

D
α +

g

D
α2 +

h

D
α3,

where

e = 2at− 3b + ct− 2d, f = −17a− bt− 10c− dt,

g = −3at + b− 2ct + 2d, h = 3a + 2c, a, b, c, d ∈ Z.

Then the mapping η : S −→ T given by η(ν) = (x, y, z), where

x =
2(t2 + 5)e− 5ft + (t2 + 30)g − (3t2 + 40)l

t3 + 15t
,

y =
−4e− ft + 3g − (t2 + 14)l

t2 + 15
,

z =
−(3t2 + 17)e + 7ft− (2t2 + 51)g + (t4 + 20t2 + 68)l

t3 + 15t
,

gives a one-to-one correspondence between S and T . The inverse mapping τ : T −→
S is given by

τ(x, y, z) = ν =
e

D
+

f

D
α +

g

D
α2 +

h

D
α3,

where

e = 2tx− 3y + tz − (t2 + 2)l, f = −17x− ty − 10z + 9tl,

g = −3tx + y − 2tz + 2(t2 + 1)l, d = 3x + 2z − 2tl.

Proposition 3.8. (Galois action on a Siegel lattice) Let ν satisfy the Siegel’s

conditions and let (x, y, z) be the points corresponding to ν by η in Proposition 3.8.

Then

η(σ(ν)) = (x1, y1, z1),
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where

x1 = y +
1
2
(t + 4)l, y1 = −x +

1
2
(t− 4)l, z1 = −x− y − z + (t− 2)l.

Remark 3.9. By a successive application of Proposition 3.9, we have

η(σ2(ν)) = (x2, y2, z2),

where

x2 = −x + tl, y2 = −y − 4l, z2 = 2x + z − tl,

and

η(σ3(ν)) = (x3, y3, z3),

where

x3 = −y +
1
2
(t− 4)l, y3 = x− 1

2
(t + 4)l, z3 = −x + y − z + (t + 2)l.

Proposition 3.10. Let G act on S as in Proposition 3.9. If Tr(ν) = 1, then the

points of the form ( t
2 ,−2, z) are fixed by σ2. Every G-orbit having no the points

contains 4 points.

For (x, y, z) ∈ T , by Proposition 3.8, the corresponding ν is given by

ν =
e

D
+

f

D
α +

g

D
α2 +

h

D
α3,

where

e = 2tx− 3y + tz − (t2 + 2)l, f = −17x− ty − 10z + 9tl,

g = −3tx + y − 2tz + 2(t2 + 1)l, d = 3x + 2z − 2tl.

Recall that

δK = (
t

2
− 6α− 3t

2
α2 + 2α3)OK .

Then we have

(ν)δK = (s + uα + vα2 + wα3),

where

s =
1
2
(2x + z − tl), u = y +

1
2
l, v =

1
2
(z − tl), w =

1
2
l.

Let N(x, y, z; l) denote the norm function NK/Q(s + uα + vα2 + wα3). By an

elementary computation, we obtain

(25) N(x, y, z; l) = f2 + tfg − 4g2,

where f = s2− u2 + v2−w2 + 6(sv− uw) + 4tsw, g = su + uv + vw + t(sv− uw) +

(t2 + 7)sw.

Note that T is the set of lattice points in (x, y, z)-plane which lies inside of

the tetrahedron surrounded by the planes P1 = 0, P2 = 0, P3 = 0, and P4 = 0;



76 HYUN KWANG KIM AND JUN HO LEE

N(x, y, z; l) > 0 if a point (x, y, z) lies inside the tetrahedron. We observe that

P1-plane is approximately arranged along xy-plane. We choose P1-plane and find

lattice points near to P1-plane. Next, if we observe the movement of conjugates of

Siegel lattice points in z = 0, 1, then we can seek for all Siegel lattice points for

z = k. Combining these data, we derive a formula for the number of points in a

Siegel lattice.

Theorem 3.11. Suppose t ≡ 2 (mod 4). Let K be the simplest quartic field corre-

sponding to t. Let N denote the number of a Siegel lattice for K which corresponds

to Tr(ν) = 1. Then we have

N =
t3 + 26t + 60

12
.

We can also give a full description of a Siegel lattice for t ≡ 4 (mod 8) and

t ≡ 0 (mod 8) by a similar procedure as a previous method. We state only the

result for the number of a Siegel lattice.

Theorem 3.12. Suppose t ≡ 4 (mod 8). Let K be the simplest quartic field corre-

sponding to t. Let N denote the number of a Siegel lattice for K which corresponds

to Tr(ν) = 1. Then we have

N =
t3 + 20t + 24

24
.

Theorem 3.13. Suppose t ≡ 0 (mod 8). Let K be the simplest quartic field corre-

sponding to t. Let N denote the number of a Siegel lattice for K which corresponds

to Tr(ν) = 1. Then we have

N =
t3 + 44t

48
.

4. Values of zeta functions

In this section, we will evaluate ζK(−1) where K is the simplest quartic field

by combining results in previous chapters. By Corollary 1.2, the computation of

ζK(−1) is equivalent to the computation of SK
1 (2). Recall that

SK
l (2b) =

∑

ν∈δ−1
K

νÀ0
TrK/Q(ν)=l

σ2b−1((ν)δK).

It follows from the unique factorization of ideals into prime ideals that for every

ν ∈ δ−1
K ,

σ2b−1((ν)δK) = σ2b−1((ν(i))δK),
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where ν(i) = σi(ν)(1 ≤ i ≤ 4). Hence, it makes the computation of SK
l (2b) easier

if we can choose a set of representatives for Galois action on a Siegel lattice. We

omit here the statement for a set of representatives for Galois action.

To calculate the summand SK
l (2b), we need to know the prime ideal decom-

position of (ν)δK . The following lemma will be helpful to classify prime ideal

decomposition in K.

Lemma 4.1. Let p be a rational odd prime. If p is ramified(resp. inert) in k/Q,

then it is totally ramified(resp. totally inert) in K/Q.

By Lemma 4.1, if p is a rational odd prime, there are only four types of prime

ideal decomposition in K/Q:

(i) Type 1 : p is totally ramified in K/Q, i.e., (p) = Q4,

(ii) Type 2 : p splits completely in K/Q, i.e., (p) = Q1Q2Q3Q4,

(iii) Type 3 : p is totally inert in K/Q, i.e., (p) remains prime in OK ,

(iv) Type 4 : p splits in k/Q(so (p) = Q1Q2), and both Q1, Q2 are inert in K/k,

i.e., (p) = Q1Q2.

If p = 2, there are other types of prime ideal decomposition in K/Q according

to the case of t. The following well known proposition(cf. [6]) will be useful in

determining prime ideal decomposition.

Proposition 4.2. Let K be an algebraic number field and let L/K be an extension

of degree n; let A(resp. B) be the ring of integers of K(resp. L). Let L = K(t), with

t ∈ B, and let F ∈ A[X] be the minimal of t over K. If P is a nonzero prime ideal

of A and K = A/P , for each polynomial H ∈ A[X], let H ∈ K[X] be obtained by

the canonical homomorphism A → A/P = K. We assume that one of the following

conditions is satisfied:

(i) A is a principal ideal domain.

(ii) B = A[t].

Let (x1, x2, . . . , xn) be an integral basis of K, and α =
√

discK/Q(1, t, ... , tn−1)

discK/Q(x1, x2, ... , xn) . Let

P be a nonzero prime ideal of A, such that, in case (i), P does not divide Aα.

Let F =
∏g

i=1 Gi
ei where Gi ∈ A[X], the polynomials G1, . . . , Gg are distinct and

irreducible over K, deg(Gi) = fi for i = 1, . . . , g. Then BP =
∏g

i=1 Qi
ei where

Q1, . . . , Qg are distinct nonzero prime ideals of B and [B/Qi : A/P ] = fi for every

i = 1, . . . , g. Moreover, Qi ∩A[t] = A[t]P + A[t]Gi(t) for i = 1, . . . , g.

Now, we are ready to investigate the prime ideal decomposition of (ν)δK . Finally,

using the norm function N(x, y, z; l), we can compute the prime ideal decomposition

of (ν)δK in K. For example, we consider N(x, y, z; l) has the only prime factor p
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which is of Type 2. If N(x, y, z; l) = p, then (ν)δK = Q, where Q is a prime ideal of

OK over p. If N(x, y, z; l) = p2, then we have either (ν)δK = Q2
1 or (ν)δK = Q1Q2,

where Q1, Q2 are prime ideals of OK over p. To determine whether (ν)δK = Q2
1

or (ν)δK = Q1Q2, we compute AAσAσ2
where A = (ν)δK and σ ∈ Gal(K/Q).

If p divides AAσAσ2
, then (ν)δK = Q1Q2. If p does not divide AAσAσ2

, then

(ν)δK = Q2
1. Using this method, we can compute the prime ideal decomposition

of (ν)δK in K where ν runs over all the elements in K which satisfies the Siegel

conditions, hence we can compute the value SK
l (2b) and finally compute the zeta

values. Now, we give two examples of the computation of ζK(−1).

Example 4.3. (The case t = 1)

The Siegel lattice points for t = 1 and their conjugates by Galois action are given

as follows:

T = {(0,−1, 0), (0, 0, 1), (−1, 1, 1), (2, 1,−1),

(1, 0, 0), (−1, 0, 1), (1, 1, 0), (0, 0, 0),

(2, 0, 0), (−3, 0, 2), (3, 2,−1), (−1,−1, 0)}.

(0,−1, 0) σ−→(0, 0, 1)σ2

−→(−1, 1, 1)σ3

−→(2, 1,−1); N(0,−1, 0; 1) = −4,

(1, 0, 0) σ−→(−1, 0, 1)σ2

−→(1, 1, 0)σ3

−→(0, 0, 0); N(1, 0, 0; 1) = −13,

(2, 0, 0) σ−→(−3, 0, 2)σ2

−→(3, 2,−1)σ3

−→(−1,−1, 0); N(2, 0, 0; 1) = −1.

Since α =
√

discK/Q(1, t, ... , tn−1)

discK/Q(x1, x2, ... , xn) = 2, we cannot use Proposition 4.2 for a prime 2.

But we can easily check that 2 is Type 4. It follows that

ζK(−1) =
1
30

SK
1 (2) =

1
30
· 4 · (14 + 1 + 5) =

8
3
.

Example 4.4. (The case t = 6)

A set of representatives of T for Galois action is given by:

R = {(4,−1, 0), (5,−2, 0), (6,−3, 0), (3,−1, 0), (4,−2, 0),

(5,−3, 0), (3,−2, 0), (4,−3, 0), (3,−2, 1), (3,−1, 1)}.

Note that the points (3,−2, 0), (3,−2, 1) are fixed by σ2.

N(4,−1, 0; 1) = 61, N(5,−2, 0; 1) = 29, N(6,−3, 0; 1) = 1,

N(3,−1, 0; 1) = 1, N(4,−2, 0; 1) = 53, N(5,−3, 0; 1) = 32,

N(3,−2, 0; 1) = 13, N(4,−3, 0; 1) = 32, N(3,−2, 1; 1) = 32 · 13,

N(3,−1, 1; 1) = 22 · 23.
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t D 30ζK(−1) t D 30ζK(−1)

1 17 24 · 5 12 25 · 5 22 · 5 · 7 · 269

2 22 · 5 22 · 5 13 5 · 37 26 · 55 · 19

4 25 52 14 22 · 53 22 · 5 · 7 · 37 · 173

5 41 26 · 5 · 13 15 241 24 · 5 · 71 · 2137

6 22 · 13 22 · 5 · 73 16 24 · 17 24 · 5 · 13 · 61

7 5 · 13 28 · 5 · 29 17 5 · 61 27 · 52 · 41 · 281

8 24 · 5 22 · 41 18 22 · 5 · 17 24 · 32 · 5 · 29 · 337

9 97 24 · 5 · 17 · 149 19 13 · 29 27 · 53 · 53 · 109

10 22 · 29 22 · 3 · 52 · 173 20 25 · 13 22 · 53 · 5101

11 137 27 · 3 · 52 · 97 21 457 26 · 32 · 53 · 17 · 197

Table 1. Values of ζK(−1) for the first twenty simplest quartic fields.

We can check that 2 is inert(resp. ramified) in k/Q(resp. K/k).

Since α =
√

discK/Q(1, t, ... , tn−1)

discK/Q(x1, x2, ... , xn) = 4, we can apply Proposition 4.2 for a prime 3.

Note that

x4 − tx3 − 6x2 + tx + 1 ≡ (x2 + x + 2)(x2 + 2x + 2)(mod 3).

Hence, 3 is Type 4. It follows that

ζK(−1) =
1
30

SK
1 (2) =

1
30
· (4 · 288 + 2 · 154) =

146
3

.

We list the values of ζK(−1) for the first twenty simplest quartic fields(Table

4.1).
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