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1. Introduction

In [3], some examples of abelian fields k are found such that Ecoh
k 6= Ck for

some prime p. We briefly recall the construction used in loc.cit to obtain an index

formula when p is prime to hk+ [k : Q] where hk+ is the class number of k+. This

case is more simple. We now explain his construction on the condition that p is

the only prime of Q which ramifies in k/Q. Then the inertia field I(k) of k at p

must be unramified and abelian over Q. Thus I(k) is equal to Q and Ck = Ccoh
k

since (Ck : Ccoh
k ) = (CI(k) : CI(k) ∩ Ccoh

k ) from the proof Lemma 2.5 of [1]. This

implies (Ek : Ecoh
k ) < ∞ as well. When (Ck : Ccoh

k ) < ∞ is satisfied, it follows

from the remarks after Corollary 3.8 that the coherent units of k is equal to the

images of the norm maps of the global units of intermediate fields of degree ps for

all sufficiently large s À 0. Then, the group Ecoh
k of coherent units contains Eps

k ,

for all such s and hence the index (Ek : Ecoh
k ) is a power of p.

Ek

¡

Ecoh
k

Ck = Ccoh
k Eps

k

@

On the other hand, the class number formula of Sinnott shows that (Ek : Ck) =

hk+ck+ , where ck+ is a constant. However, the constant ck+ vanishes up to a power

of 2 when there is only one prime which ramifies in k. Hence, the index (Ek : Ck)
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is prime to p and, Ek = Ecoh
k . Finally, up to a power of 2,

(Ecoh
k : Ccoh

k ) = hk+

when p is the only prime of Q which ramifies in k/Q and p is prime to hk+ [k : Q].

We will introduce a guess which relates the coherent property to a characteriz-

ing of the first layers of Zp-extensions of an abelian field. Let k∞ be the cyclotomic

Zp-extension of k0 = k = k(µp) with kn its unique subfield of degree pn over k. We

define k̃∞ as the inverse limits of k×n with respect to the norm maps. Let π be the

natural projection from k̃∞ into k. Let kcoh denote the group π(k̃∞) of coherent

elements of k and kuniv = ∩nNnk×n be the universal norms in k∞, where Nn denotes

the norm map from kn to k. For an extension field K/k and a group H, we will

say K is H-extendable over k if there is an extension field F ⊃ K such that F/k

is Galois and its Galois group G(F/k) is isomorphic to H. Let Θk be the set of all

elements α in k× such that k( p
√

α) is Zp-extendable. In their paper [2], Bertrandias

and Payan studied Θk in terms of other subgroups of the ground field. Among

these subgroups are the group of universal norms, the group of p-units. We briefly

mention the main results of loc.cit here. The first main result is a characterizing of

elements whose p-th roots generate Z/pnZ-extendable fields.

Theorem 1.1 (=Théorème 1 of loc.cit). Let α ∈ k×. Then k( p
√

α) is Z/pnZ-

extendable if and only if α ∈ (k×)pNnk×n .

Based on Theorem 3.11 above, Ψk is defined to be the set of all α ∈ k× such that

k( p
√

α) is Z/pnZ-extendable for all n. As an immediate corollary of Theorem 3.11

above,

Corollary 1.2 (=Corollary of loc.cit).

Ψk =
⋂
n

(k×)pNnk×n

Using these results, it was shown that an extension k( p
√

α) which is Z/pnZ-extendable

for all n need not be Zp-extendable by showing an example of k such that Θk 6= Ψk.

We are now ready to introduce our guess.

Guess. For an abelian field k, Θk = kcohk×p.

At the present moment, we do not know whether the above equality holds for

all abelian fields. One inclusion follows from the same arguments of the proof of
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Proposition 1.3 of loc.cit. Hence, for an abelian field k,

Θk ⊃ kcohk×p.

We will find a condition on the prime p under which the above guess is true. More

precisely, if p is the only prime which ramifies in k such that the Sylow p-subgroup

of the class group of k is generated by the class of p, then Θk = kcohk×p. We need

the following result of loc.cit.

Proposition 1.3 (=Théorème 3 of loc.cit). For a number field k = k(µp), if there

is only one prime p in k lying over p and the Sylow p-subgroup of the class group

of k is generated by the class of p, then

Θk = Ψk = E
(p)
k k×p.

Notice that from the assumption on p, there is a norm coherent sequence (πn)n∈N
of prime elements πn of kn lying over p. It follows from the previous remarks that

kcoh = (E(p)
k )coh = (E(p)

k )univ.

By the Sinnott’s class number formula, if the assumption of Proposition 3.13 is

satisfied, then C(p)k×p ⊗ Zp = E
(p)
k k×p ⊗ Zp and hence

C(p)k×p ⊗ Zp = (E(p)
k )cohk×p ⊗ Zp

since (C(p)
k )coh = (C(p)

k ). From the equality (E(p)
k )cohk×p = kcohk×p, it follows that

Θk = E
(p)
k k×p = C

(p)
k k×p = kcohk×p.

This proves that if there is only one prime p in k lying over p such that the Sylow

p-subgroup of the class group of k is generated by the class of p, then our guess is

true.
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