Trends in Mathematics - New Series Information Center for Mathematical Sciences Volume 11, Number 2, 2009, pages 37–39 ASARC Workshop Daecheon & Muju 2009 ©2009 ICMS in KAIST

COHERENT ELEMENTS AND FIRST LAYERS OF \mathbb{Z}_v -EXTENSIONS

SOOGIL SEO

1. Introduction

In [3], some examples of abelian fields k are found such that $E_k^{\text{coh}} \neq C_k$ for some prime p. We briefly recall the construction used in loc.cit to obtain an index formula when p is prime to $h_{k^+}[k:\mathbb{Q}]$ where h_{k^+} is the class number of k^+ . This case is more simple. We now explain his construction on the condition that p is the only prime of \mathbb{Q} which ramifies in k/\mathbb{Q} . Then the inertia field I(k) of k at p must be unramified and abelian over \mathbb{Q} . Thus I(k) is equal to \mathbb{Q} and $C_k = C_k^{\text{coh}}$ since $(C_k:C_k^{\text{coh}})=(C_{I(k)}:C_{I(k)}\cap C_k^{\text{coh}})$ from the proof Lemma 2.5 of [1]. This implies $(E_k:E_k^{\text{coh}})<\infty$ as well. When $(C_k:C_k^{\text{coh}})<\infty$ is satisfied, it follows from the remarks after Corollary 3.8 that the coherent units of k is equal to the images of the norm maps of the global units of intermediate fields of degree p^s for all sufficiently large $s\gg 0$. Then, the group E_k^{coh} of coherent units contains $E_k^{p^s}$, for all such s and hence the index $(E_k:E_k^{\text{coh}})$ is a power of p.

On the other hand, the class number formula of Sinnott shows that $(E_k : C_k) = h_{k+}c_{k+}$, where c_{k+} is a constant. However, the constant c_{k+} vanishes up to a power of 2 when there is only one prime which ramifies in k. Hence, the index $(E_k : C_k)$

¹⁹⁹¹ Mathematics Subject Classification. 11R27, 11R29. Key words and phrases. Norm coherent units, Sinnott's circular units.

38 SOOGIL SEO

is prime to p and, $E_k = E_k^{\text{coh}}$. Finally, up to a power of 2,

$$(E_k^{\mathrm{coh}}: C_k^{\mathrm{coh}}) = h_{k^+}$$

when p is the only prime of \mathbb{Q} which ramifies in k/\mathbb{Q} and p is prime to $h_{k+}[k:\mathbb{Q}]$.

We will introduce a guess which relates the coherent property to a characterizing of the first layers of \mathbb{Z}_p -extensions of an abelian field. Let k_{∞} be the cyclotomic \mathbb{Z}_p -extension of $k_0 = k = k(\mu_p)$ with k_n its unique subfield of degree p^n over k. We define \tilde{k}_{∞} as the inverse limits of k_n^{\times} with respect to the norm maps. Let π be the natural projection from \tilde{k}_{∞} into k. Let k^{coh} denote the group $\pi(\tilde{k}_{\infty})$ of coherent elements of k and $k^{\text{univ}} = \bigcap_n N_n k_n^{\times}$ be the universal norms in k_{∞} , where N_n denotes the norm map from k_n to k. For an extension field K/k and a group H, we will say K is H-extendable over k if there is an extension field $F \supset K$ such that F/k is Galois and its Galois group G(F/k) is isomorphic to H. Let Θ_k be the set of all elements α in k^{\times} such that $k(\sqrt[p]{\alpha})$ is \mathbb{Z}_p -extendable. In their paper [2], Bertrandias and Payan studied Θ_k in terms of other subgroups of the ground field. Among these subgroups are the group of universal norms, the group of p-units. We briefly mention the main results of loc.cit here. The first main result is a characterizing of elements whose p-th roots generate $\mathbb{Z}/p^n\mathbb{Z}$ -extendable fields.

Theorem 1.1 (=Théorème 1 of loc.cit). Let $\alpha \in k^{\times}$. Then $k(\sqrt[p]{\alpha})$ is $\mathbb{Z}/p^n\mathbb{Z}$ -extendable if and only if $\alpha \in (k^{\times})^p N_n k_n^{\times}$.

Based on Theorem 3.11 above, Ψ_k is defined to be the set of all $\alpha \in k^{\times}$ such that $k(\sqrt[p]{\alpha})$ is $\mathbb{Z}/p^n\mathbb{Z}$ -extendable for all n. As an immediate corollary of Theorem 3.11 above,

Corollary 1.2 (=Corollary of loc.cit).

$$\Psi_k = \bigcap_n (k^\times)^p N_n k_n^\times$$

Using these results, it was shown that an extension $k(\sqrt[p]{\alpha})$ which is $\mathbb{Z}/p^n\mathbb{Z}$ -extendable for all n need not be \mathbb{Z}_p -extendable by showing an example of k such that $\Theta_k \neq \Psi_k$. We are now ready to introduce our guess.

Guess. For an abelian field k, $\Theta_k = k^{\text{coh}} k^{\times p}$.

At the present moment, we do not know whether the above equality holds for all abelian fields. One inclusion follows from the same arguments of the proof of Proposition 1.3 of *loc.cit*. Hence, for an abelian field k,

$$\Theta_k \supset k^{\operatorname{coh}} k^{\times p}$$
.

We will find a condition on the prime p under which the above guess is true. More precisely, if p is the only prime which ramifies in k such that the Sylow p-subgroup of the class group of k is generated by the class of \mathfrak{p} , then $\Theta_k = k^{\mathrm{coh}} k^{\times p}$. We need the following result of loc.cit.

Proposition 1.3 (=Théorème 3 of loc.cit). For a number field $k = k(\mu_p)$, if there is only one prime \mathfrak{p} in k lying over p and the Sylow p-subgroup of the class group of k is generated by the class of \mathfrak{p} , then

$$\Theta_k = \Psi_k = E_k^{(p)} k^{\times p}.$$

Notice that from the assumption on p, there is a norm coherent sequence $(\pi_n)_{n\in\mathbb{N}}$ of prime elements π_n of k_n lying over p. It follows from the previous remarks that

$$k^{\text{coh}} = (E_k^{(p)})^{\text{coh}} = (E_k^{(p)})^{\text{univ}}.$$

By the Sinnott's class number formula, if the assumption of Proposition 3.13 is satisfied, then $C^{(p)}k^{\times p}\otimes \mathbb{Z}_p=E_k^{(p)}k^{\times p}\otimes \mathbb{Z}_p$ and hence

$$C^{(p)}k^{\times p}\otimes \mathbb{Z}_p=(E_k^{(p)})^{\mathrm{coh}}k^{\times p}\otimes \mathbb{Z}_p$$

since $(C_k^{(p)})^{\text{coh}} = (C_k^{(p)})$. From the equality $(E_k^{(p)})^{\text{coh}}k^{\times p} = k^{\text{coh}}k^{\times p}$, it follows that

$$\Theta_k = E_k^{(p)} k^{\times p} = C_k^{(p)} k^{\times p} = k^{\operatorname{coh}} k^{\times p}.$$

This proves that if there is only one prime \mathfrak{p} in k lying over p such that the Sylow p-subgroup of the class group of k is generated by the class of \mathfrak{p} , then our guess is true.

References

- J. Belliard, Sous-modules d'unites en theorie d'Iwasawa, Theorie des nombres, Annees 1998/2001, Publ. Math. UFR Sci. Tech. Besancon, Univ. Franche-Comte, Besancon(2002), 12 pp.
- [2] F. Bertrandias and J. Payan, Γ-extensions et invariants cyclotomiques, Ann. Sci. Ecole Norm. Sup. 5(1972), 517-543.
- [3] R. Coleman, On an Archimedean characterization of the circular units, J. reine angew. Math. 356(1985), 161-173.

DEPARTMENT OF MATHEMATICS, YONSEI UNIVERSITY, 134 SINCHON-DONG, SEODAEMUN-GU, SEOUL 120-749, SOUTH KOREA e-mail: sgseo@yonsei.ac.kr