ENERGY DECAY FOR A LOCALIZED DISSIPATIVE WAVE EQUATION IN AN EXTERIOR DOMAIN

MI JIN LEE

ABSTRACT. We derive a fast decay rate estimate of the local energy for the wave equation with a localized dissipation of the type $a(x)u_t$ in an exterior domain Ω . The dissipative coefficient a(x) is nonnegative function only on a neighborhood of some part of the boundary $\partial\Omega$ and no growth conditions are imposed on the boundary. This extends some results of Nakao as well as the well-known most classical results. The method of proof is based on multipliers technique, on some interpolation inequality and differential inequality and on a similar idea of Zuazua and Nakao.

1. INTRODUCTION

In this paper we consider the decay property of the local energy of the solutions to the initial-boundary value problem for the wave equation with dissipation:

- (1.1) $u_{tt} \Delta u + a(x)u_t = 0 \text{ in } \Omega \times [0, \infty),$
- (1.2) $u = 0 \text{ on } \partial\Omega \times [0, \infty),$
- (1.3) $u(x,0) = u_0(x), \quad u_t(x,0) = u_1(x) \text{ in } \Omega,$

where Ω is an exterior domain in \mathbb{R}^N , $N \geq 1$ such that $V = \Omega^c (\equiv \mathbb{R}^N \setminus \Omega)$ is a compact set in \mathbb{R}^N , the boundary $\partial\Omega$ is smooth, a(x) is a nonnegative function supported only on a neighborhood a part of the boundary $\partial\Omega$ and (u_0, u_1) belong to $H_0^1(\Omega) \times L^2(\Omega)$ and has a compact support, that is,

$$\operatorname{supp} u_0 \cup \operatorname{supp} u_1 \subset B_L \equiv \{x \in \mathbb{R}^N | |x| \le L\}$$

for some L > 0.

As usually, we define the local energy $E_{loc}^{R}(t)$ and the total energy E(t) of the solution u to the problem (1.1) - (1.3) by

(1.4)
$$E_{loc}^{R}(t) \equiv \frac{1}{2} \int_{\Omega \cap B_{R}} (|u_{t}|^{2} + |\nabla u|^{2}) dx$$
 and $E(t) \equiv \frac{1}{2} \int_{\Omega} (|u_{t}|^{2} + |\nabla u|^{2}) dx$,

where B_R is a ball with radius R > L > 0.

This problem has been studied by several authors (see [1, 2, 7, 9, 10, 11, 15]). It is well known that decay property of the local energy $E_{loc}^{R}(t)$ depends on the geometrical shape and dimension N of the domain Ω , or the dissipative term.

Key words and phrases. Wave equation, Local energy decay, Local dissipation, Exterior problem.

©2006 Information Center for Mathematical Sciences

²⁰⁰⁰ Mathematics Subject Classification. 35B35, 35B40, 35L70.

MI JIN LEE

When $a(x) \equiv 0$, Morawetz, Ralston and Strauss [7] proved that if Ω is nontrapping, then the local energy $E_{loc}^{R}(t)$ decays to 0 as $t \to \infty$, and furthermore, if V is star-shaped, then $E_{loc}^{R}(t)$ decays algebraically, in particular, the result of Morawetz [6] show that it decays exponentially if $N \geq 3$ and odd. Bloom and Kazarinoff [1] proved that this result holds true for more general classes of finite bodied including ones of dog-bone type. However, if V is trapping, then we cannot expect any uniform decay of $E_{loc}^{R}(t)$ (see [13]).

When a(x) > 0, we can also consider this problem. In the case $a(x) \equiv \text{const.}(> 0)$, Dan and Shibata [2], based on a spectral analysis, proved that

$$E_{loc}^R(t) = \mathcal{O}(t^{-N}) \ (N \ge 2),$$

and it seems to be difficult to apply to the case that a(x) is not constant. On the other hand, where a(x) vanishes somewhere in Ω the (local) energy decay is never trivial. In order to consider this problem, we first introduce a part of the boundary $\partial\Omega$ as follow (see Lions [5] and Russell [14]).

$$\Gamma(x_0) = \{ x \in \partial \Omega | (x - x_0) \cdot \nu(x) > 0 \},\$$

where $x_0 \in \mathbb{R}^N$ is arbitrarily fixed and $\nu(x)$ denotes the outward unit normal vector at $x \in \partial \Omega$. Note that V is star-shaped with respect to x_0 if and only if $\Gamma(x_0) = \emptyset$. Now let's state our precise assumptions on the dissipative term $a(x)u_t$.

Hypothesis A. Let $a(x) \in L^{\infty}(\Omega)$ is a nonnegative bounded function on Ω with $suppa(\cdot) \subset B_L$ for some L > 0 and there exist a relatively open set ω satisfying $\overline{\Gamma(x_0)} \subset \omega \subset \Omega$ and $x_0 \in \mathbb{R}^N$ such that

(1.5)
$$a(x) \ge \varepsilon_0 > 0$$
 a.e. in ω

or

(1.6)
$$a(x) > 0$$
 a.e. in ω , $\int_{\omega} \frac{1}{a(x)^p} dx < \infty$

for some 0 . Here we remark that if the function <math>a(x) satisfies (1.6), then a(x) might be zero at some point $x \in \Omega$ and thus the decay problem is more delicate to treat. Under this hypothesis, Nakao [9] considered decay estimates of local energy. In fact he proved that when a(x) satisfies (1.5), any finite solution u(t) satisfies

$$E_{loc}^{L+\varepsilon t}(t) = \mathcal{O}(t^{-(1-\delta)})$$

for any $0 < \varepsilon, \delta < 1$. Moreover let m > 0 be a integer, N < 2m, $\partial\Omega$ be of C^{m+1} class, and $(u_0, u_1) \in H^{m+1}(\Omega) \times H^m(\Omega)$ satisfy the compatibility condition of the *m*-th order relative to the problem (1.1) - (1.3)(see [8]). If a(x) satisfies (1.6) and belongs to $C^{m-1}(\bar{\Omega} \cap B_L)$, then the result of [9] show that the local energy of energy solution goes to zero as $t \to \infty$ algebraically, depending on *m*, that is,

$$E_{loc}^{L+\varepsilon t}(t) = \mathcal{O}\left(t^{-\frac{2mp}{2mp+N}}\right).$$

The main purpose of this paper is to derive fast decay estimates for $E_{loc}^{R}(t)$ without any geometric condition on $\partial\Omega$ when a(x) is effective only on a part of $\partial\Omega$. We note here that our result extends Theorem 2 of Nakao [9]. For the proof of our result we provide a direct method, base on multiplier techniques combined with some ideas

46

in Lions [5], Nakao [9] and Zuazau [15]. For types of total energy decay property see [10] and [11].

2. Preliminaries and Statement of the Main Result

Throughout this paper we shall use familiar Sobolev spaces $H^m(\Omega)$ with respect to the norm

$$||f||_{H^m(\Omega)} = \sum_{|\alpha| \le m} ||D^{\alpha}f||_{L^2(\Omega)},$$

where $D^{\alpha} = \partial^{|\alpha|}/(\partial x_1^{\alpha_1}, ..., \partial x_N^{\alpha_N}), \alpha = (\alpha_1, ..., \alpha_N), \alpha_i \geq 0, i = 1, ..., N, |\alpha| = \alpha_1 + \alpha_2 + \cdots + \alpha_N$, and $\|\cdot\|_{L^p(\Omega)}$ denotes L^P norm on Ω . The space $H_0^m(\Omega)$ is the closure of $C_0^{\infty}(\Omega)$ in $H^m(\Omega)$. We begin with the following well-known lemmas, which we will use in the proof of the main result.

Lemma 2.1. (Gagliardo-Nirenberg inequality) Let $1 \le r , and <math>m \ge 0$. Then we have the inequality

$$\|v\|_{W^{k,p}(\Omega)} \le C \|v\|^{\theta}_{W^{m,q}(\Omega)} \|v\|^{1-\theta}_{L^{r}(\Omega)} \quad for \quad v \in W^{m,q}(\Omega) \cap L^{r}(\Omega)$$

with some C > 0 and

$$\theta = \left(\frac{k}{N} + \frac{1}{r} - \frac{1}{p}\right) \left(\frac{m}{N} + \frac{1}{r} - \frac{1}{q}\right)^{-1}$$

provided that $0 < \theta \le 1$ ($0 < \theta < 1$ if $p = \infty$, mq = integer).

Lemma 2.2. (General Hölder inequality) Let $1 \le p_1, ..., p_m \le \infty$ with $1/p_1+1/p_2+ \cdots + 1/p_m = 1$ and assume $u_k \in L^{p_k}(\Omega)$ for k = 1, 2, ..., m. Then we have the inequality

$$\int_{\Omega} |u_1 \cdots u_m| dx \leq \prod_{k=1}^m ||u_i||_{L^{p_k}(\Omega)}.$$

Let Ω be an exterior domain in \mathbb{R}^N , $N \geq 1$ with the smooth boundary and $a(\cdot): \overline{\Omega} \to [0, \infty)$ a nonnegative function satisfying Hypothesis. The existence and the regularity of the solution u of the problem (1.1) - (1.3) is given by the following standard well-known result (see [3, 12]). In order to state the results, we need the following definition (see [8]).

Definition 2.1. Let m be a nonnegative integer. We say that the initial condition $(u_0, u_1) \in H^{m+1}(\Omega) \times H^m(\Omega)$ satisfies the compatibility condition of the m-th order relative to the problem (1.1) - (1.3) if

$$u_k \in H^{m+1-k}(\Omega) \cap H^1_0(\Omega), \quad k = 0, 1, 2, ..., m \quad and \quad u_{m+1} \in L^2(\Omega),$$

where $\{u_k\}$ is defined inductively by

$$u_{k+2} = \Delta u_k - a(x)u_{k+1}, \quad k = 0, 1, ..., m - 1.$$

Theorem 2.1. Let $a(\cdot) \in C^{m-1}(\overline{\Omega} \cap B_L)$ and $(u_0, u_1) \in H^{m+1}(\Omega) \times H^m(\Omega)$ satisfy the compatibility condition of the m-th order relative to the problem (1.1) - (1.3). Then there exists a unique solution u(t) to the problem (1.1) - (1.3) such that

$$u \in X^{m} \equiv \bigcap_{k=0}^{m} C^{k}([0,\infty); H^{m+1-k}(\Omega) \cap H^{1}_{0}(\Omega)) \cap C^{m+1}([0,\infty); L^{2}(\Omega)).$$

and the linear mapping

$$(u_0, u_1) \in H^{m+1}(\Omega) \times H^m(\Omega) \mapsto u \in X^m$$

is continuous.

The main result of this paper reads as follows:

Theorem 2.2. Let m be a positive integer. Let $(u_0, u_1) \in H^{m+1}(\Omega) \times H^m(\Omega)$ satisfy the compatibility of the m-th order relative to the problem (1.1) - (1.3). If $a(\cdot) \in C^{m-1}(\overline{\Omega})$ satisfies (1.6) for some 0 in Hypothesis <math>A, then we have the decay estimates:

If $N \geq 2m$ and $N - 2m \leq mp$, then we have

$$E_{loc}^{L+\varepsilon t}(t) = \mathcal{O}\left(t^{-\frac{2mp}{2mp+N}}\right)$$

for the solution $u(t) \in X^m$ and any $0 < \varepsilon < 1$.

Remark 2.1. If $1 \leq N < 2m$, then Nakao [9] prove that

$$E_{\scriptscriptstyle loc}^{L+\varepsilon t}(t) = \mathcal{O}\left(t^{-\frac{2mp}{2mp+N}}\right)$$

Remark 2.2. We can observe that the decay rates -2m(p+1)/(2mp+N) and -2m/(2mp+N) tend to (p+1)/p > 1 and 1/p > 1 as m tends to infinity.

References

- C. O. Bloom and N. D. Kazarinoff, Local energy decay for a class of nonstar-shaped bodies, Arch. Rational Mech. Anal. 55 (1975), 73–85.
- [2] W. Dan and Y. Shibata, On a local energy decay of solutions of a dissipative wave equation, Funkcial. Ekvac. 38 (1995), 545–568.
- [3] M. Ikawa, Decay of solutions of the wave equations in the exterior of two convex obstacles, Osaka J. Math. 19 (1982), 459–509.
- [4] V. Komornk, Exact Controllability and Stabilizaion-The Multiplier Method, John Wiley, New York/Masson, Paris, 1994.
- [5] J. L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1. Contrôlabilité exacte, RMA 8, Masson, 1988.
- [6] C. Morawetz, Exponential decay of solutions of the wave equation, Comm. Pure Appl. Math. 19(1996), 439–444.
- [7] C. Morawetz, J. Ralston and W. Strauss, Decay of solutions of the wave equation outside nontrapping obstacles, *Comm. Pure Appl. Math.* **30**(1977), 447–508.
- [8] M. Nakao, Decay of solutions of the wave equation with a local degenerate dissipation, Israel Journal of Mathematics 95 (1996), 25–42.
- [9] M. Nakao, Stabilization of local energy in an exterior domain for the wave equation with a localized dissipation, J. Differential Equations 148(1998), 388–406.
- [10] M. Nakao, Energy decay for the linear and semilinear wave equations in exterior domains with some localized dissipations, *Math. Z.* 238(2001), 781-797.
- [11] M. Nakao and I. H. Jung, Energy decay for the wave equation in exterior domains with some half-linear dissipation, *Differential and Integral Equations* 16 (2003), 927–948.
- [12] A. Pazy, Semi-groups of linear operators and applications to partial differential equations, Springer-Verlag, New-York, (1983), 317–331.
- [13] J. Ralston, Solutions of the wave equation with localized energy, Comm. Pure Appl. Math. 22(1969), 807–823.

- [14] D. L. Russel, Exact boundary value controllability theorems for wave and heat processes in star-complemented regions, in Differential Games and Control Theory, Roxin, Liu and Sternberg, Eds. Marcel Dekker Inc., New York, 1974.
- [15] E. Zuazua, Exponential decay for the semilinear wave equation with localized damping in unbounded domains, J. Math. Pures Appl. 70 (1991), 513–529.

 $\label{eq:linear} \begin{array}{l} \text{Department of Mathematics, Pusan National University, Pusan 609-735, South Korea} \\ \textit{E-mail address: jin8719@hanmail.net} \end{array}$