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ENERGY DECAY FOR A LOCALIZED DISSIPATIVE WAVE
EQUATION IN AN EXTERIOR DOMAIN

MI JIN LEE

ABSTRACT. We derive a fast decay rate estimate of the local energy for the
wave equation with a localized dissipation of the type a(z)u; in an exterior
domain Q. The dissipative coefficient a(x) is nonnegative function only on a
neighborhood of some part of the boundary 02 and no growth conditions are
imposed on the boundary.This extends some results of Nakao as well as the
well-known most classical results. The method of proof is based on multipliers
technique, on some interpolation inequality and differential inequality and on
a similar idea of Zuazua and Nakao.

1. INTRODUCTION

In this paper we consider the decay property of the local energy of the solutions
to the initial-boundary value problem for the wave equation with dissipation:

(1.1) ugg — Au~+ a(z)uy =0 in Q x [0,00),
(1.2) u=0 on 9 x [0, 00),
(1.3) u(z,0) = up(x), ui(z,0) =wuy(x) in Q,

where (2 is an exterior domain in R, N > 1 such that V = Q¢(= RV \ Q) is a
compact set in RV, the boundary 9 is smooth, a(z) is a nonnegative function
supported only on a neighborhood a part of the boundary 92 and (ug, u1) belong
to HY(Q) x L?(2) and has a compact support, that is,

supp uo U supp u; C Br = {z € RN||z| < L}

for some L > 0.
As usually, we define the local energy Ef (t) and the total energy E(t) of the
solution u to the problem (1.1) — (1.3) by

1 1
(1.4) EE (t)= f/ (|ue® + |Vu*)dz and E(t) = f/(|ut|2 + | Vu|?)dz,
2 JanBg 2 Jo
where Bp is a ball with radius R > L > 0.
This problem has been studied by several authors (see [1, 2, 7, 9, 10, 11, 15]).

It is well known that decay property of the local energy Eff (t) depends on the

loc
geometrical shape and dimension N of the domain €2, or the dissipative term.
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When a(z) = 0, Morawetz, Ralston and Strauss [7] proved that if  is nontrap-
ping, then the local energy Efgc(t) decays to 0 as t — oo, and furthermore, if V' is
star-shaped, then Ez}Zc (t) decays algebraically, in particular, the result of Morawetz
[6] show that it decays exponentially if N > 3 and odd. Bloom and Kazarinoff [1]
proved that this result holds true for more general classes of finite bodied includ-
ing ones of dog-bone type. However, if V' is trapping, then we cannot expect any
uniform decay of E (t) (see [13]).

When a(z) > 0, we can also consider this problem. In the case a(x) = const.(>

0), Dan and Shibata [2], based on a spectral analysis, proved that
Bty =0(™") (N > 2),

and it seems to be difficult to apply to the case that a(x) is not constant. On the
other hand, where a(x) vanishes somewhere in ) the (local) energy decay is never
trivial. In order to consider this problem, we first introduce a part of the boundary
0N as follow (see Lions [5] and Russell [14]).

[(xg) = {x € 9Q|(z — x0) - v(z) > 0},

where o € RY is arbitrarily fixed and v(z) denotes the outward unit normal vector
at x € 9. Note that V is star-shaped with respect to xq if and only if T'(xg) = 0.
Now let’s state our precise assumptions on the dissipative term a(x)u;.
Hypothesis A. Let a(z) € L*>(Q) is a nonnegative bounded function on  with
suppa(-) C By, for some L > 0 and there exist a relatively open set w satisfying
I'(z9) Cw C Qand 29 € RN such that

(1.5) a(z) > ey >0 ae in w

or

(1.6) a(z) >0 ae in w /de<oo
| e ]ty

for some 0 < p < 1. Here we remark that if the function a(x) satisfies (1.6),
then a(x) might be zero at some point €  and thus the decay problem is more
delicate to treat. Under this hypothesis, Nakao [9] considered decay estimates of
local energy. In fact he proved that when a(x) satisfies (1.5), any finite solution
u(t) satisfies
EEF(1) = 0(t~0-9)

for any 0 < £,6 < 1. Moreover let m > 0 be a integer, N < 2m, 0 be of C™*+!
class, and (ug,u1) € H™TH(Q2) x H™(Q) satisfy the compatibility condition of the
m-th order relative to the problem (1.1) — (1.3)(see [8]). If a(x) satisfies (1.6) and
belongs to C™~(QN Br), then the result of [9] show that the local energy of energy
solution goes to zero as t — oo algebraically, depending on m, that is,

ELtet() = O (t——2,i;:fN) .

loc

The main purpose of this paper is to derive fast decay estimates for Eff_(t) without
any geometric condition on 9 when a(x) is effective only on a part of 9Q2. We note
here that our result extends Theorem 2 of Nakao [9]. For the proof of our result we

provide a direct method, base on multiplier techniques combined with some ideas
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in Lions [5], Nakao [9] and Zuazau [15]. For types of total energy decay property
see [10] and [11].

2. PRELIMINARIES AND STATEMENT OF THE MAIN RESULT

Throughout this paper we shall use familiar Sobolev spaces H™ () with respect
to the norm

1flm@) = > 1D fllz2@),

lo|<m
where D* = 911 /(928" ..., 023" ), a = (ai,..,an),a; > 0,i = 1,..,N,|a| =
o4+ az+ -+ ay, and || - | Lr(o) denotes L norm on Q. The space H{*(Q2) is

the closure of C§°(Q) in H™ (). We begin with the following well-known lemmas,
which we will use in the proof of the main result.

Lemma 2.1. (Gagliardo-Nirenberg inequality) Let 1 <r < p < 00,1 < q < p, and
m > 0. Then we have the inequality

< Il oo 0]ty for v W™9(Q) N L7 (Q)

wWm.a(Q)

(kL ) (m 1 1\
AN r pJ\N r g

provided that 0 < 0 <1 (0 < 0 <1 if p=o00,mq = integer).

101l 5.0 ey

with some C > 0 and

Lemma 2.2. (General Holder inequality) Let 1 < p1,...,ppm < 00 with 1/p1+1/pa+
<-4+ 1/pm =1 and assume uy, € LP*(Q) for k = 1,2,...,m. Then we have the

inequality
m
/ |u1 . .um|daj < H ||Ui||LPk(Q)'
Q k=1

Let Q be an exterior domain in R, N > 1 with the smooth boundary and
a(+) : @ — [0,00) a nonnegative function satisfying Hypothesis. The existence and
the regularity of the solution u of the problem (1.1) — (1.3) is given by the following
standard well-known result (see [3, 12]). In order to state the results, we need the
following definition (see [8]).

Definition 2.1. Let m be a nonnegative integer. We say that the initial condition
(ug,u1) € H™FL(Q) x H™(Q) satisfies the compatibility condition of the m-th order
relative to the problem (1.1) — (1.3) if

up € H" RN HYQ), k=0,1,2,....;m and uy,.q1 € L*(Q),
where {uy} is defined inductively by
Upto = Duy — a(z)ugyr, k=0,1,...,m—1.
Theorem 2.1. Let a(-) € C™ QN BL) and (ug,u1) € H™T1(Q) x H™(Q) satisfy

the compatibility condition of the m-th order relative to the problem (1.1) — (1.3).
Then there exists a unique solution u(t) to the problem (1.1) — (1.3) such that

we XM = NLyCH([0,00); H™HH(Q) 0 HY(Q)) N O™ ([0, 00): L2(Q),
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and the linear mapping
(o, ur) € H™ () x H™(Q) = u € X™
18 continuous.
The main result of this paper reads as follows:

Theorem 2.2. Let m be a positive integer. Let (ug,u1) € H™1(Q) x H™(Q)
satisfy the compatibility of the m-th order relative to the problem (1.1) — (1.3). If
a(-) € C™~Y(Q) satisfies (1.6) for some 0 < p < 1 in Hypothesis A, then we have
the decay estimates:

If N >2m and N —2m < mp, then we have

EL+st(t> —-0 (tiz’il’%)

loc

for the solution u(t) € X™ and any 0 < e < 1.

Remark 2.1. If 1 < N < 2m, then Nakao [9] prove that

loc

EL+6t(t) —-0 (tiizi?fw)

Remark 2.2. We can observe that the decay rates —2m(p +1)/(2mp+ N) and
—2m/(2mp+ N) tend to (p+1)/p > 1 and 1/p > 1 as m tends to infinity.
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