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CLASS NUMBERS, IWASAWA INVARIANTS AND MODULAR
FORMS

DONGHO BYEON

1. IWASAWA INVARIANTS

K, a number field
p, an prime

[ p ifp#2
=V 4 iftp=2

Q,,, the unique subfield of Q((y,n) of degree p™ over Q (unless p =2, n =1)
K, :=KQ,
Cl,, the p-part of the class group of K,

Iwasawa. For sufficiently large n,

ﬁCln — pp"AL(K,I))+7L/\(K1P)+V(K»P).

Geenberg conjecture. If K is a totally real number field, then

MK, p) = p(K,p) =0

for any prime p.

Ferrero-Washington. If K is an abelian number field, then
n(K,p) =0
for any prime p.
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2. TWASAWA A-INVARIANTS OF QUADRATIC FIELDS

Real quadratic fields

p, a prime

D > 0, a positive fundamental discriminant
D, p) = NQ(D),p)

Question.
H{o< D < X | N(D,p) =0} >7

p = 2: (Gauss’ genus theory + a theorem of Iwasawa [5])

#0 < D < X | AM(D,2) =0} > X/log X.

p = 3: (Davenport-Heilbronn theorem [4] refined by Horie and Nakagawa [7] + a
theorem of Iwasawa [5])

Ho<D< X | ND,3)=0} > X.

p > 3: (Ono [8] and Byeon [1])
#{0<D < X | MD,p) =0} > VX/log X.

Imaginary quadratic fields

p, a prime

D < 0, a negative fundamental discriminant

If (£) = 1, then A(D,p) > 1.

Question. How often do trivial A-invariants occur?

1. (%) # 1 and A\(D,p) =0

One can have similar results to the case of real quadratic fields.
2. (%) =1and A(D,p) =1

p = 2: (Ferrero and Kida’s formula))

H{0< D < X | AD,2) =0 and (%) =1} > X/log X.
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p > 3: (Jochnowitz [6])

For any prime p, if there is at least one imaginary quadratic field Q(v/Dg) (Do < 0)

such that A(Dg,p) =1 and (%) = 1, then there are infinitely many such fields.

Main Theorem of this talk: (Byeon [2] 2005)

Let p be an odd prime.
D
(7

H{-X <D<0]|AD,p)=1and
p

) =1} > VX /log X.

The aim of this talk is to explain how to obtain the main theorem.

3. EXISTENCE OF AT LEAST ONE

Proposition 1

(i) Let p be an odd prime and Dy < 0 be the fundamental discriminant of the

imaginary quadratic field Q(y/1 — p?). Then xp,(p) = 1 and \,(Q(v/Dp)) = 1 if
and only if 271 # 1 (mod p?), that is, p is not a Wieferich prime.

(ii) Let p be a Wieferich prime. If p = 3 (mod 4), let Dy < 0 be the fundamen-
tal discriminant of the imaginary quadratic field Q(y/T—p) and if p = 1 (mod
4), let Dy < 0 be the fundamental discriminant of the imaginary quadratic field

Q(vA=p). Then xp,(p) = 1 and A,(Q(vDy)) = 1.

Proof: This theorem follows from the following lemma.
Lemma (Gold)

Let p be an odd prime and D < 0 be the fundamental discriminant of the imaginary
quadratic field Q(v/D) such that xp(p) = 1. Let (p) = PP in Q(v/D). Suppose
that P" = () is principal for some integer 7 not divisible by p. Then \,(Q(v/D)) =
1 if and only if 7771 # 1 (mod P?).
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4. EXISTENCE OF INFINITELY MANY

Proposition 2

Let p be an odd prime and D < 0 be the fundamental discriminant of the imaginary
quadratic field QQ(v/D) such that xp(p) = 1. Then W is p-integral and

L(1—p,xp)

MWQWD) =1 = )

Z0 (mod p),
where L(s, xp) is the Dirichlet L-function.
Proof: This theorem follows from the following lemma.

Lemma (Washington)

Let D < 0 be the fundamental discriminant of the imaginary quadratic field

QD).
A(D,p) =1 <= Ly(0, xpw) # Ly(1, xpw) (mod p?).

Proof of Main Theorem:
Cohen modular forms
r, N, non-negative integers with r > 2

Define Cohen number H(r, N) by

0 if N#0,1 (mod 4)
(1—2r) if N =0

H(r,N):=< ¢
L1 =7 (2)-x if (-1)"N = Df?.
)

(For the detail of x, see [3]
Cohen. F,(z):= > N_oH(r,N)g" € M,11,2(To(4), x0)-

Consider the following modular form

Gp(z) == Z MQN € Mp+1/2(ro(4p4)7X0)'

(=1

By Proposition 1, we have

Gp(z) #0 (mod p),
by proposition 2, we have

H(p,D)/p#0 (mod p) iff A(D,p)=1.
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Finally applying Sturm’s theorem to the modular form G,(z), we have

H{-X <D <0|H(p,D)/p %0 and (%) — 1)} > VX /log X

and complete the proof of main theorem.
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