
Trends in Mathematics

Information Center for Mathematical Sciences

Volume 9, Number 1, June, 2006, Pages 13–16

ON MOD 3 GALOIS REPRESENTATIONS WITH
CONDUCTOR 4

HYUNSUK MOON

Let GQ be the absolute Galois group Gal(Q/Q) of Q. Let Fp be an algebraic
closure of the finite field Fp of p elements. In this paper, we prove the non-existence
of certain mod 3 Galois representation:

Theorem 1. There exist no irreducible representations ρ : GQ → GL2(F3) with
N(ρ) dividing 4.

Here, N(ρ) =
∏

p-3 pnp(ρ) is the Artin conductor of ρ outside 3 ([6], §1.2; the
definition of the exponent np(ρ) will be recalled below). This proves a special case of
Serre’s conjecture ([6]). Indeed, the conjecture predicts that such a representation,
up to twist by a power of the mod 3 cyclotomic character, come from a cuspidal
eigenform of level 4 and weight ≤ 4, but there are no such forms. Such a result
may serve as the first step of an inductive proof of Serre’s conjecture for N(ρ) = 4
if Khare’s proof in the case of N(ρ) = 1 ([3]) can be extended.

Serre’s conjecture is known to be true if the image Im(ρ) of ρ is solvable ([4],
Thm. 4). So, it remains for us to prove the Theorem 1 in the following two cases:
(i) Im(ρ) is non-solvable, (ii) ρ is even and Im(ρ) is solvable.

1. Proof: Non-solvable case

Our strategy in the proof here is basically the same as in [8]; to deduce con-
tradiction by comparing two kinds of inequalities of the opposite direction for the
discriminant of the field corresponding to the kernel of ρ — one form above (the
refined Tate bound ([4], Thm. 3) and the other from below (the Odlyzko bound
[5]). A new ingredient in this paper is the estimate of the prime-to-3 part of the
discriminant. To do this, we require a few lemmas. To state them, let Dp (⊂ GQ)
be the decomposition subgroup for a choice of an extension of the prime ideal (p) to
Q, and Ip its inertia subgroup. For a continuous representation ρ : Dp → GLF`

(V ),
where V is a finite-dimensional F`-vector space with ` 6= p, we define the exponent
of Artin conductor of ρ by

np(ρ) :=
∞∑

i=0

1
(G0 : Gi)

dimF`
(V/V Gi).

Here, Gi is the ith ramification subgroup of G := Im(ρ).
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Let p and ` be two distinct prime numbers, and let ρ : Dp → GL2(F`) be a
continuous representation with np(ρ) = 2.

Lemma 2. (1) If ρ is irreducible, then it is tamely ramified.
(2) If ρ is wildly ramified, then it is a direct-sum of two characters, of which one

is unramified and the other has exponent of conductor 2.

Remark. This lemma holds true if Dp is the absolute Galois group of any complete
discrete valuation field with finite residue filed of characteristic p.

Proof. (1) Since ρ is ramified, the inertia fixed part V G0 is 6= V . If dim(V G0) = 1,
then V is reducible as a representation of Dp, because G0 is normal in G and hence
G stabilizes V G0 . Thus the irreducibility of ρ implies that dim(V G0) = 0. Since

(∗) np(ρ) = dim(V/V G0) +
1

(G0 : G1)
dim(V/V G1) + · · · = 2,

we must have dim(V Gi) = 2 for all i ≥ 1, meaning that ρ is tamely ramified.
(2) Suppose ρ is wildly ramified, so that dim(V G1) < 2. Then the equality (∗)

implies that dim(V G0) = 1. This means that ρ is reducible. We may assume that
ρ is of the form

ρ =
(

ψ1 ∗
ψ2

)
,

where ψi : Dp → F×` are characters of Dp and ψ1 is unramified. Let ρss =
(

ψ1

ψ2

)

be the semisimplification of ρ and put Gss := Im(ρss). Then G sits in a short exact
sequence

1 → H → G → Gss → 1,

where H = G ∩ (1 ∗
1) is the kernel of the natural homomorphism G → Gss. Note

that Gss is abelian of order prime to `, and H is an elementary abelian `-group of
rank at most 2. Let H0 := H ∩G0. If H0 6= 1, then it is mapped by the projection
G0 → G0/G1 to the unique `-Sylow subgroup of the tame inertia subgroup G0/G1.
Let G[

0 be the inverse image in G0 of the maximal prime-to-` subgroup of the
cyclic group G0/G1. Then H0 and G[

0 are both normal in G0, H0G
[
0 = G0, and

H0 ∩ G[
0 = 1. Hence we have G0 = H0 × G[

0. But this is impossible, because any
two elements of (1 ∗

1) of order ` and of order prime to ` do not commute (Note
that G[

0 6= 1, as G1 6= 1). Hence H0 = 1 and G0 has order prime to `. Next we
argue in the same way with G/G0 in place of G0/G1. If H 6= 1, then it is mapped
by the projection G → G/G0 to the unique `-Sylow subgroup of G/G0. Let G[

be the inverse image in G of the maximal prime-to-` subgroup of the cyclic group
G/G0. Then H and G[ are both normal in G, HG[ = G, and H ∩G[ = 1. Hence
G = H × G[. But this is again impossible by the same reason as above. Hence
G = G[ = Gss.

¤

Lemma 3. Let ρ : D2 → GL2(F3) be a continuous representation with n2(ρ) = 2.
Then it is a direct-sum of two characters, of which one is unramified and the other
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has exponent of conductor 2. If Gi denotes the ith ramification subgroup of G :=
Im(ρ), then one has G0 = G1 ' Z/2Z and G2 = 1.

Remark. This lemma holds true if D2 is the absolute Galois group of a complete
discrete valuation field with residue field F2.

Proof. We first show that ρ cannot be irreducible. Suppose ρ is irreducible. Then by
Lemma 2, (1), it is tamely ramified. In particular, G is meta-abelian. An inspection
of Chapter V of [7] shows that G is an extension of an elementary abelian 2-group
G of rank at most 2 by an abelian group H of order prime to 3. Since ρ is tamely
ramified, the extension F/Q2 corresponding to G is unramified and G ' Z/2Z. Now
H is the Galois group of a tamely ramified abelian extension of F . Since the residue
field of F is F4, the inertia subgroup H0 of H is a quotient of F×4 ' Z/3Z. Since H

has order prime to 3, we must have H0 = 1. This contradicts the assumption that
n2(ρ) = 2.

Thus ρ is reducible, and we may assume that ρ is of the form

ρ =
(

ψ1 ∗
ψ2

)
,

where ψi : D2 → F×3 are characters of D2. They factor through the abelianization
Dab

2 of D2. Since the inertia subgroup of Dab
2 is isomorphic to the pro-2 group

Z×2 , these characters are either unramified or wildly ramified. Since n2(ρ) = 2,
the only possible case is that ψ1 is unramidied and ψ2 is wildly ramified (if ∗ = 0,
then the role of ψ1 and ψ2 may be exchanged). By Lemma 2,(2), we have ∗ = 0
and ρ ' ψ1 ⊕ ψ2. Then since n2(ρ) = n2(ψ2) = 2, it follows that G0 = G1 '
Z×2 /(1 + 22Z2) ' Z/2Z and G2 = 1. ¤

(∗∗) Let K/Q2 be the extension cut out by the ρ of Lemma 3, and ∆ its different.
Then by the Führerdiskriminantenproduktformel, we have v2(∆) = 1, where v2 is
the valuation of K normalized by v2(2) = 1.

Suppose there was a ρ as in the Theorem. Assume Im(ρ) is non-solvable. Let
K be the corresponding field to kernel of ρ. Let n := [K : Q], and d

1/n
K denote the

root discriminant of K.
If 3m divides the order of G, then by §251-253 of [1], the projective image G̃ of

G in PGL2(F3) is isomorphic to either PGL2(F3m) or PSL2(F3m). Thus we have
n = |G| ≥ |PSL2(F3m)|. Note that we have m ≥ 2 because G̃ is solvable if m = 1.

From Thm. 3 in [4] and Lemma 2,

|dK |1/n ≤ 32+ 1
6− 1

3m · 2

≤
{

19.1329 if m = 2

21.6169 if m ≥ 3.

Then from [5], we have

|dK |1/n >

{
19.567 if n ≥ 360 = |PSL2(F9)|,
22.021 if n ≥ 9828 = |PSL2(F27)|.
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Comparing these two sets of inequalities, we obtain contradictions.

2. Even and solvable case

Assume ρ is even and Im(ρ) is solvable. According to §§19–21, of [7], a maximal
irreducible solvable subgroup G of GL2(Fp) has one of the following structures:
(i) Imprimitive case: G is isomorphic to the wreath product F×p o (Z/2Z), or (ii)

Primitive case: G/F×p is isomorphic to the symmetric group S4. We remark that,
if ρ is even, then the complex conjugation is mapped by ρ to ±(10

0
1), so that the

field K cut out by ρ is totally real or CM.
Now we show that there exists no such extension K. Let G := Im(ρ) and G

its image in PGL2(Fp). If either G is of type (i) or G is of type (ii) and G is a
2-group, then K contains a non-trivial abelian extension of degree prime to 3 over
a real quadratic field F . Since K is unramified outside {2, 3} and its conductor
(or, exactly speaking, the conductor of ρ) at 2 is 22, F is the field Q(

√
3). Then

K/F is unramified at 2 since it has ramification index 2 at the prime 2 (Lemma 3).
Since any ray class group of F of 3-power conductor has 3-power order, there are
no non-trivial abelian extension of F which are unramified outside 3 and of degree
prime to 3.

Suppose now that G is of type (ii) and G is isomorphic to S4 or A4. By [2], there
are three S4-extensions (resp. one A4-extension) of Q which are unramified outside
{2, 3} and whose ramification index at 2 divides 2. However, each of these fields
has 2-component of the root discriminat greater than 2, which contradicts (∗∗). ¤
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