AN AUTHENTICATED CERTIFICATELESS PUBLIC KEY ENCRYPTION SCHEME

YOUNG-RAN LEE AND HYANG-SOOK LEE

Abstract. In 2003, Al-Riyami and Paterson[1] proposed the certificateless public key cryptography(CL-PKC) which is intermediate between traditional certificated PKC and identity-based PKC. In this paper, we propose an authenticated certificateless public key encryption scheme. Our result improves their public key encryption scheme in the efficiency. The security of the protocol is based on the hardness of two problems; the computational Diffie-Hellman problem(CDHP) and the bilinear Diffie-Hellman problem(BDHP). We also give a formal security model for both confidentiality and authentication, and then show that our scheme is probably secure in the security model.

1. Introduction

The traditional public key cryptosystem has a well-established technology, public key infrastructure(PKI), but the issues of key management are somewhat complex. The problem of PKI technology are the certificate management, including revocation, storage, distribution and the computational cost of certificate verification. In 1984, Shamir [15] proposed the concept of an identity-based cryptosystem to solve those key management problems. The idea of identity-based cryptosystems is to get rid of public key certificates by allowing the user’s public key to be the binary sequence corresponding to an information identifying him in a non-ambiguous way.(E-mail address, IP address combined to a user name, and social security number can be used.) Boneh-Franklin[2, 3] presented the first fully-functional and provably secure identity-based encryption(IBE) scheme using bilinear maps over supersingular elliptic curves in 2001. The ID based system needs a trusted private key generator(PKG) which generates the private keys of the entities using their public keys and a master secret key related to the global parameters for the system. Identity-based public key cryptosystems(ID-PKC) have an advantage in the aspect of the key management compared with the traditional public key system. However, ID-PKC has a significant shortcoming with respect to the PKG. The dependence on the PKG who can be in a privileged position by generating all user’s private keys inevitably causes the key escrow problem to the ID-PKC. The issues of key escrow bring about several problems, for example, the invasion of a privacy, the dishonest PKG’s masquerading as a regular user and so on.

Key words and phrases. certificateless public key encryption, confidentiality, unforgeability.
Considering all these problems, Al-Riyami and Paterson[1] introduced a new paradigm for public key cryptography, which is called a certificateless public key cryptography (CL-PKC). They proposed the certificateless public key encryption, signature, key exchange schemes and hierarchical CL-PKC. These schemes are all derived from pairings on elliptic curves. CL-PKC system does not require the use of certificate and does not have the key escrow feature of ID-PKC. Thus the CL-PKC is a model for the use of the public key cryptography that is intermediate between traditional PKI and ID-PKC.

In this paper we present an authenticated certificateless public key encryption scheme which improves the Al-Riyami and Paterson’s encryption scheme in the efficiency. Our scheme also does not require certificates and does not suffer from the key escrow property that seems to be inherent in the identity-based PKC. To circumvent the escrow, the users in our model use the Diffie-Hellman key share from their ephemeral contributions that cannot be known by the PKG. In this scheme, the long-term keys are used for non-repudiation purpose and hence authentication. Consequently, our scheme keeps confidentiality even from the PKG and gives an authentication property. Furthermore, another advantage of our scheme would be damage control, in other words, disclosure of the master secret from the PKG would not compromise the confidentiality of the encrypted plaintext.

The security of our system is based on both the computational Diffie-Hellman (CDH) assumption and the bilinear Diffie-Hellman (BDH) assumption. Based on those assumptions, we first show that our scheme is EUF-CMA secure for integrity and then show that the scheme is IND-CCA secure for confidentiality.

The rest of our paper is organized as follows. In Section 2, we recall underlying definitions before describing security notions of our scheme. In Section 3, we present our public key encryption scheme which is not only provably secure against chosen ciphertext attack but also is existential unforgeable under adaptive chosen message attack in the random oracle model, assuming that the CDH problem and the BDH problem are computationally hard. Furthermore, we analyze the security of our proposed scheme in Section 4. In Section 5, we compare the efficiency and the security of our proposed scheme with those of other known schemes. Finally, we give some conclusions in Section 6.

2. Preliminaries

2.1. Backgrounds

We first review the admissible bilinear map, which is the mathematical primitive that plays on central role in our public key encryption scheme.

Bilinear map. Let G_1 denote an additive group of prime order q and G_2 a multiplicative group of the same order. Let P be a generator of G_1. Assume that the discrete logarithm problem (DLP) is hard in both G_1 and G_2.

A mapping $\hat{e} : G_1 \times G_1 \rightarrow G_2$ satisfying the following properties is called an admissible bilinear map.

1. Bilinear; $\hat{e}(aP, bQ) = \hat{e}(P, Q)^{ab}$ for all $P, Q \in G_1$ and $a, b \in \mathbb{Z}_q^*$
2. Non-degenerate; \hat{e} does not send all pairs of points in $G_1 \times G_1$ to the identity in G_2. (Hence, if P is a generator of G_1 then $\hat{e}(P, P)$ is a generator of G_2)

3. Computable; There exists an efficient algorithm to compute $\hat{e}(P, Q)$ for all $P, Q \in G_1$.

Typically the map \hat{e} will be derived from either the Weil or Tate pairings on an elliptic curve over a finite field. The security of our scheme is based on the difficulty of computational Diffie-Hellman Problem (CDHP) and Bilinear Diffie-Hellman (BDHP). Now we give formal descriptions of such hard problems.

Bilinear Diffie-Hellman Problem. Let G_1, G_2 be two groups of prime order q. Let $\hat{e} : G_1 \times G_1 \rightarrow G_2$ be an admissible bilinear map and let P be a generator of G_1.

The BDH problem in $< G_1, G_2, \hat{e} >$ is as follows: Given $< P, aP, bP, cP >$ for some $a, b, c \in \mathbb{Z}_q^*$, compute $W = \hat{e}(P, P)^{abc} \in G_2$.

Algorithm A has advantage ϵ in solving BDHP in $< G_1, G_2, \hat{e} >$ if

$$\Pr[A(P, aP, bP, cP) = \hat{e}(P, P)^{abc}] \geq \epsilon$$

where the probability is over the random choice of a, b, c in \mathbb{Z}_q^*, and the random bits of A.

Bilinear Diffie-Hellman Parameter Generator. As in [2, 3], a randomized algorithm IG is a BDH parameter generator if IG takes a security parameter $k > 0$, runs in time polynomial in k, and outputs the description of an admissible pairing $\hat{e} : G_1 \times G_1 \rightarrow G_2$.

Bilinear Diffie-Hellman Assumption. We say a BDH parameter generator IG, satisfies the BDH assumption if the following is negligible in k for all probabilistic polynomial time algorithm A:

$$\Pr[(G_1, G_2, \hat{e}) \leftarrow IG(1^k) ; P \leftarrow G_1 ; a, b, c \leftarrow \mathbb{Z}_q^* : A(G_1, G_2, \hat{e}, P, aP, bP, cP) = \hat{e}(P, P)^{abc}]$$

For the remainder of the paper we make use of some fixed BDH parameter generator IG that satisfies the BDH assumption, and use the symbols G_1, G_2, \hat{e}, q to represent the constituents of its output.

Computational Diffie-Hellman Problem. Given P, aP, bP for some $a, b \in \mathbb{Z}_q^*$, compute abP.

Computational Diffie-Hellman Assumption. There exists no algorithm running in expected polynomial time which can solve the CDH problem with non-negligible probability.

2.2. Security Notions

In the next section, we prove confidentiality and unforgeability of our scheme in the random oracle model based on the BDH assumption, CDH assumption and the Fujisaki-Okamoto transformation [8]. We first give the formal definitions of confidentiality and unforgeability for our purpose.

2.2.1 Confidentiality

We say that a scheme is IND-CCA secure if no polynomially bounded adversary has a non-negligible advantage against the challenger in the following game.
Setup. The challenger takes a security parameter k and runs the Setup algorithm to obtain parameters and a master key s. It gives the adversary parameters with the value s such that $P_{\text{pub}} = sP$.

Although our scheme is no longer ID based, a third party (PKG) issuing long-term private keys of communicating parties exists in the system. To avoid the misbehavior of the PKG, our security model is strengthened more than the security models of other encryption schemes to handle adversaries. In short, we assume that the adversary can access to the master-key.

Phase 1. The adversary issues queries q_1, q_2, \cdots, q_m where q_i is one of :

- Extraction query of the form (ID_I) On receiving such a query, the challenger runs $\text{Extract}(ID_I)$ and responds with $S_I = x_ID_I$, where d_I is a long-term private key generated by the PKG.
- Encryption query of the form (ID_I, ID_J, M) On receiving such a query, the challenger runs $\text{Extract}(ID_I) = S_I$ followed by $\text{Encrypt}(S_I, ID_J, M)$. The response is the resulting ciphertext.
- Decryption query of the form (ID_I, ID_J, C) On receiving such a query the challenger runs $\text{Extract}(ID_J)$ followed by $\text{Decrypt}(ID_I, S_J, C)$. The response is the plaintext M.

These queries may be asked adaptively, that is, each query q_i may depend on the replies $q_1, q_2, \cdots, q_{i-1}$.

Challenge. Once the adversary decides that Phase 1 is over it outputs two equal length plaintexts $M_0, M_1 \in \mathcal{M}$ and two identities, ID_A and ID_B, on which it wishes to be challenged. The only constraint is that ID did not appear in any extraction query in Phase 1. The challenger pick a random bit $b \in \{0,1\}$ and runs $\text{Extract}(ID_A)$ followed by $\text{Encrypt}(S_A, ID_B, M_b)$. It returns the resulting ciphertext C^* to the adversary.

Phase 2. During this phase, the adversary may make more queries q_{m+1}, \cdots, q_n if the types described in Phase 1 with the restriction below.

- The Extraction query ID_A and ID_B are not permitted.
- The Decryption query (ID_A, ID_B, C^*) is not permitted

These queries may be asked adaptively as in Phase 2.

Guess. Finally, A outputs a bit $b' \in \{0,1\}$ and wins the game if $b = b'$.

We refer to such an adversary A as an IND-CCA attacker. We define the advantage of A to be $\text{Adv}(A) = |\Pr[b = b'] - \frac{1}{2}|$. The probability is over the random bits used by the challenger and the adversary.

2.2.2 Unforgeability

We say that a scheme is secure against ciphertext forgery if no polynomially-bounded adversary has a non-negligible advantage in the following game.

Setup. The challenger takes a security parameter k and runs the Setup algorithm to obtain parameters and a master key s. It gives the adversary parameters with the value s such that $P_{\text{pub}} = sP$.

Attack. During this phase the adversary makes the queries described below to the challenger.
Extraction query of the form ID_I: On receiving such a query the challenger runs $\text{Extract}(ID_I)$ and responds with $S_I = x_ID_I$, where d_I is a long-term private key generated by the PKG.

Encryption query of the form (ID_I, ID_J, M): On receiving such a query the challenger runs $\text{Extract}(ID_I)$ followed by $\text{Encrypt}(S_I, ID_J, M)$. The response is the resulting ciphertext.

Decryption query of the form (ID_I, ID_J, C): On receiving such a query the challenger runs $\text{Extract}(ID_I)$ followed by $\text{Decrypt}(ID_I, S_J, C)$. The response is the resulting plaintext M. (Sometimes the adversary is notified that the issued ciphertext is invalid.)

Forge: The adversary attempts to output any valid ciphertext C from a sender A to a receiver B, provided it has not queried the private keys of A and B in the previous step. The adversary wins if the ciphertext is valid.

We call such an adversary an EUF-CMA attacker.

3. An Authenticated certificateless encryption scheme

Our scheme can be naturally divided four distinct algorithms: Setup, Key Extraction, Encrypt, Decrypt.

Setup: Given a security parameter k, the algorithm works as follows:
1. Run \mathcal{IG} on input k to generate a prime q, two groups $\mathbb{G}_1, \mathbb{G}_2$ of order q, and an admissible bilinear map $\hat{e}: \mathbb{G}_1 \times \mathbb{G}_1 \rightarrow \mathbb{G}_2$. Choose an arbitrary generator $P \in \mathbb{G}_1$.
2. Pick a random $s \in \mathbb{Z}_q^*$ and set $P_{pub} = sP$.
3. Choose cryptographic hash functions $H_1: \{0,1\}^* \rightarrow \mathbb{G}_1^*$, $H_2: \mathbb{G}_1^* \rightarrow \{0,1\}^n$, $H_3: \{0,1\}^n \times \mathbb{G}_2 \rightarrow \{0,1\}^n$, $H_4: \{0,1\}^n \times \{0,1\}^n \rightarrow \mathbb{Z}_q^*$ and $H_5: \{0,1\}^n \rightarrow \{0,1\}^n$.

Then, output the system parameters $< \mathbb{G}_1, \mathbb{G}_2, q, \hat{e}, P, P_{pub}, H_1, H_2, H_3, H_4, H_5 >$ and the master key s. The message space is $\mathcal{M} = \{0,1\}^n$. The ciphertext space is $\mathcal{C} = \mathbb{G}_1 \times \{0,1\}^n \times \{0,1\}^n$.

Key Extraction: For a given string $ID \in \{0,1\}^*$, the algorithm does:
1. Compute $Q_{ID} = H_1(ID) \in \mathbb{G}_1^*$.
2. Pick a random $x_{ID} \in \mathbb{Z}_q^*$, set public keys $X_{ID} = x_{ID}P$ and $Y_{ID} = x_{ID}Q_{ID}$.
3. Set the private keys d_{ID} to be $d_{ID} = sQ_{ID}$ and then set $S_{ID} = x_{ID}d_{ID} = x_{ID}sQ_{ID}$, where s is the master key.

Encrypt: To encrypt $M \in \mathcal{M}$, do the following:
1. Choose a random $\sigma \in \{0,1\}^n$.
2. Set $r = H_4(\sigma, M)$.
3. Compute $x_A X_B = T$.
4. Set the ciphertext to be $C = rQ_A, \sigma \oplus H_3(H_2(T), \hat{e}(d_A, Y_B))^r, M \oplus H_5(\sigma)$.

Decrypt: Let $C = rU, V, W > \in \mathcal{C}$. To decrypt this ciphertext using the private key $S_B = x_BQ_B$, perform the followings:
1. Compute $x_B X_A = T$.
2. Compute $V \oplus H_3(H_2(T), \hat{e}(U, S_B)) = \sigma$, where $S_B = x_Bd_B$.

AN AUTHENTICATED CERTIFICATELESS PUBLIC KEY ENCRYPTION SCHEME 181
Compute $W \oplus H_5(\sigma) = M$

(4) Set $r = H_4(\sigma, M)$ and test if $U = rQ_A$. If not, reject the ciphertext.

(5) Output M as the decryption of C.

The consistency is easy to verify by the bilinearity. We have

$$\hat{e}(d_A, Y_B) = \hat{e}(sQ_A, xBQ_B) = \hat{e}(rQ_A, xBsQ_B) = \hat{e}(U, xBd_B) = \hat{e}(U, S_B).$$

The receiver can be convinced of the origin of the encrypted message by checking if the condition $rQ_A = U$ holds. Even if the received message would be encrypted under the wrong public key, the receiver could detect the error by testing the final condition.

4. Security Analysis of our Scheme

4.1. Proof of Integrity

The following theorem shows that our scheme is secure against ciphertext forgery without key escrow, assuming the BDHP on G_1 and G_2 is hard and the CDHP problem on G_1 is hard.

Theorem 1. Let the hash functions H_1, H_2, H_3, H_4 and H_5 be random oracles. Then our scheme is a ciphertext-unforgeable public key encryption assuming the BDHP and the CDHP are hard in groups generated by \mathbb{G}. Concretely, suppose A is a polynomially-bounded adversary that can forge a ciphertext with advantage ϵ and makes at most q_{E} key extraction queries and at most $q_{H_1}, q_{H_2}, q_{H_3}$ queries to the hash functions H_1, H_2 and H_3 respectively. Then there exists a polynomially bounded algorithm B that solves the BDHP and the CDHP with advantage $\epsilon/\left(\frac{q_{H_1}}{2}\right)^2 q_{D}$.

Proof. Algorithm B has as input random and uniformly distributed instances (P, aP, bP, cP), (P, xP, yP) of the BDHP and CDHP respectively. For finding the value $\hat{e}(P, P)^{abc}$ and xyP with A's assistance, B has control over the hash functions H_1, H_2 and H_3. To respond to these hash queries, B maintains a list L_{H_1} that stores information on H_1-queries, a list L_{H_2} that stores information on H_2-queries and a list L_{H_3} that stores information on H_3-queries. All lists are initially empty. For simplicity, we assume that all H_1-queries are distinct (as replies can be cached) and that any query involving an ID_A is preceded by the H_1-query for ID_A. There are several assumptions we may make out A’s behavior when interacting with the decryption oracle.

- Before A gives its guess, A issues a decryption query on it.
- A does not issue decryption queries on ciphertexts it has received from the encryption oracle or ciphertexts it can compute because it has previously asked for the private key of the sender or receiver.
- Given the above assumptions, we may assume that after every decryption query on a ciphertext, if the answer is a plaintext (i.e. the ciphertext it queried is valid) then A stops and outputs this ciphertext.

B works by interacting with A as follows.

Setup: At the beginning of the game, B gives A the system parameters $< G_1, G_2, q, \hat{e}, P, P_{pub}, H_1, H_2, H_3, H_4, H_5 >$ with the value s such that $P_{pub} = sP$.
H_1-queries : \mathcal{B} chooses two random numbers I, J between 1 and q_{H_1}, with $I \neq J$. When \mathcal{A} asks a polynomially bounded number of H_1-queries on identities of his choice, \mathcal{B} responds as follows.

(i) At the ith H_1-query, \mathcal{B} answers $b_I Q_I$, where Q_I is an arbitrary public value. Precisely, if ID_A does not already appear on the list and ID_A is the ith distinct H_1-query made by \mathcal{A}, then \mathcal{B} chooses $b_I \in \mathbb{Z}_q^*$, adds $<ID_B, b_I Q_I, b_I, \perp>$ to the list L_{H_1}, and answers $H_1(ID_A) = b_I Q_I$.

(ii) At the jth H_1-query, \mathcal{B} answers $b_J Q_J$, where Q_J is an arbitrary public value. Precisely, if ID_A does not already appear on the list and ID_A is the jth distinct H_1-query made by \mathcal{A} then \mathcal{B} chooses $b_J \in \mathbb{Z}_q^*$, adds $<ID_B, b_J Q_J, b_J, \perp>$ to the list L_{H_1}, and answers $H_1(ID_A) = b_J Q_J$.

(iii) For $H_1(ID_e)$ where $e \neq I, J$, \mathcal{B} chooses $b_e, \alpha_e \in \mathbb{Z}_q^*$ and adds $<ID_e, b_e P, b_e, \alpha_e>$ to the list L_{H_2}, and answers $H_1(ID_e) = b_e P$.

H_2-queries : A H_2-query on ID_A, ID_B is handled as follows:

(i) If ID_A and ID_B are not the identities ID_I and ID_J then \mathcal{B} computes $\alpha \in \mathbb{Z}_q^*$, adds $<ID_A, ID_B, \alpha P, h_2>$ to the list L_{H_2}, and answers h_2.

(ii) In the case ID_A and ID_B are the identities ID_I and ID_J, \mathcal{B} chooses $z \in \mathbb{Z}_q^*$, adds $<ID_I, ID_J, z P, h_2>$ to the list L_{H_2}, and answers $h_2 = H_2(z P)$.

H_3-queries : \mathcal{A} can issue a H_3-query request for (h_2, U, ID_A, ID_B) at any time. \mathcal{B} runs the H_3-simulation algorithm to respond \mathcal{A}’s query as follows.

(i) In the case of $ID_A = ID_I$ and $ID_B = ID_J$, L_{H_3} is examined for an entity of the form $<ID_A, ID_B, P, h_2>$ for some α.

- If such entities are found, L_{H_3} must contain $<ID_I, ID_J, P, h_2>$. \mathcal{B} chooses $d^* \in \mathbb{G}_1^*$ randomly, computes $\tilde{c}(U, d^*) = w$ and $h_3 = H_3(h_2, w)$, adds the tuple $<ID_I, ID_J, U, (h_2, w), h_3>$ to the list L_{H_3}, and then answers h_3.

- Otherwise, \mathcal{B} chooses a random $z' \in \mathbb{Z}_q^*$ and then adds $<ID_I, ID_J, z' P, h_2'>$ to the list L_{H_2}. \mathcal{B} repeats the remaining process with the new tuple in the L_{H_2}-list, until obtaining a tuple $<ID_I, ID_J, U, (h_2', w'), h_3'>$.

(ii) In case $ID_A \neq ID_I$, $ID_B \neq ID_J$, \mathcal{B} searches a tuple $<ID_A, ID_B, \alpha P, h_2>$ for some α in the list L_{H_2}.

- If such a tuple is found, \mathcal{B} executes the same process in case (i). \mathcal{B} computes $w^* = \tilde{c}(U, \alpha d_B)$. \mathcal{B} could obtain $\alpha d_B = \alpha b_B P$ from the L_{H_1}-list because $ID_B \neq ID_J$. He puts the tuple $<ID_A, ID_B, U, (h_2', w'), h_3'>$ in the list L_{H_3}, and answers h_3.

- Otherwise, \mathcal{B} chooses a random $z' \in \mathbb{Z}_q^*$, adds $<ID_A, ID_B, z' P, h_2'>$ to the list L_{H_2}-list and computes $w^* = \tilde{c}(U, \alpha d_B)$. With (h_2', w'), \mathcal{B} simulates the H_3-oracle and then obtains $h_3^* = H_3(h_2', w^*)$. It adds $<ID_A, ID_B, U, (h_2', w^*), h_3'>$ to the list L_{H_3} and answers h_3^*.

Key extraction query : When \mathcal{A} asks a key extraction query on ID_B,

(i) If $ID_A = ID_I$ or ID_J, then \mathcal{B} fails and stops.

(ii) If $ID_A \neq ID_I, ID_J$, then the list L_{H_1} must contain $<ID_A, b_A P, b_A, \alpha_A>$. The decryption key corresponding to ID_A is $\alpha_A s Q_A = \alpha_A b_A P = \alpha_A b_A s P$. It is computed by \mathcal{B} and returned to \mathcal{A}.
Encryption query: At any time, A can perform Encrypt query for a plaintext M and identities ID_A and ID_B.

(i) If $ID_A = ID_I$ and $ID_B = ID_J$, B chooses random values $r \in \mathbb{Z}_q^*$, $\sigma \in \{0,1\}^n$, $\alpha_B \in \mathbb{Z}_q^*$, computes $U' = rQ_A = rbyQ_I$, $V' = \sigma \oplus H_3(h_2(zP))$, $\hat{e}(U', \alpha_B sb_{Bj}Q_J))$, $W' = M \oplus H_5(\sigma)$ and then answers $C' = <U', V', W'>$.

(ii) If $ID_A \neq ID_I, ID_B \neq ID_J$, B computes the private key corresponding ID_A. So the ciphertext is computed as described by the PKC algorithm.

Decryption query: Suppose A issues an decryption query for a ciphertext $C = <U, V, W>$ between identities ID_A and ID_B.

(i) If $ID_A = ID_I, ID_B = ID_J$, L_{H_2}-list is examined for an entry of the form $<ID_I, ID_J, U, (h_2, w), h_3>$. If such an entry is present, $p = (h_2, w)$ is added to the list L_p. A is notified that C is invalid, even if C is valid.

(ii) If $ID_A \neq ID_I, ID_B \neq ID_J$, the list L_{H_2} must contain the entry $<ID_A, ID_B, U, (h_2, w''), h_3''>$ and so $\alpha_B sb_{B}P$ is a decryption key for ID_B. Then the ciphertext is decrypted as outlined in the description of the PKC algorithm. If it is valid, the plaintext is given to A (and A wins).

Eventually, A terminates. Any output is ignored. Now if L_p is empty, then B fails. Otherwise B outputs a random element of L_p.

Analysis. The probability that A never issues a key extraction query on one of the guessed ID is at least $1/(\binom{q}{2})$. (We call any identity that the asked ID is equal to one of values ID_I, ID_J a guessed identity.) If A has submitted a valid ciphertext then with a probability greater than $1/(\binom{q}{2})$, A has successfully forged as ciphertext between the guessed identities (but is returned that the ciphertext is invalid). If $p = (H_2(xyP), \hat{e}(P, P)^{abc})$ is not in the L_p-list then A’s view is independent of a correct forgery. Hence the probability that A queries $H_3(p)$ is at least ϵ. If this happens then B cannot fail and then outputs the correct value with probability at least $\frac{1}{q^D}$. We then have $Adv(B) \geq \epsilon/(\binom{q}{2})^2 q^D$. □

4.2 Proof of Security for Message Confidentiality

The security of our scheme relies on the intractability of the BDHP and the CDHP. We can state a theorem similar to Theorem 1.

Theorem 2. Let the hash functions H_1, H_2, H_3, H_4 and H_5 be random oracles. We assume our scheme is ciphertext-unforgeable. Then our scheme is a chosen ciphertext secure public key encryption (IND-CCA) assuming the BDHP and the CDHP are hard in groups generated by G. Concretely, suppose A is a polynomially bounded IND-CCA adversary with advantage ϵ and makes at most q_D key extraction queries, at most q_H decryption queries and at most $q_{H_1}, q_{H_2}, q_{H_3}$ queries to the hash functions H_1, H_2 and H_3 respectively, then there exists a polynomially bounded algorithm B that solves the BDHP and the CDHP with advantage $\epsilon / q_{H_1}(\binom{q}{2})^2$.

Proof. The proof follows the similar steps to the proof of Theorem 1, but differs in the decryption query: since we assume our scheme is ciphertext unforgeable, the decryption oracle’s operation must be changed. H_1, H_2 and H_3 hash queries
are treated by B as in the proof of Theorem 1. To simulate Encryption and Key extraction queries by A, B acts exactly as in the proof of Theorem 1. So we only make mention of the decryption queries.

Phase 1: Whenever A issues a decryption query, it is notified that the given ciphertext is invalid. By the hypothesis of ciphertext-unforgeability, A cannot distinguish between this simulation of a decryption oracle and a real one.

Challenge: After a polynomially bounded number of queries, A chooses a pair of identities on which he wishes to be challenged. When A produces his two plaintexts M_0, M_1 and ID_A, ID_B, B responds as follows.

(i) If queried identities are not guessed IDs then B fails and stops.
(ii) Otherwise, the ciphertext is computed as described by the PKC algorithm for any random values $r \in \mathbb{Z}_q^*$, $\sigma \in \{0, 1\}$, $M_b \in \{M_0, M_1\}$. B answers the challenge $C = < U, V, W >$.

Phase 2: Key extraction, Encryption, Decryption query; B responds to these queries in the same way it did in the phase 1 of Theorem 1 (except decryption query). But the usual restrictions on A’s behavior apply in this phase.

- If A asks the private keys of ID_I or ID_J before choosing his target identities, B fails because he is unable to answer the question.
- If A actually chooses to be challenged on ID_I and ID_J then he cannot ask the key extraction query for ID_I or ID_J’s.
- A cannot make a decryption query on the challenge ciphertext for the combination of the challenge identities and involving public keys that were used to encrypt M_b.

Guess: Eventually, A outputs its guess b' for b and wins if $b = b'$. Now if L_p is empty then B fails. Otherwise, B outputs a random element of L_p.

Analysis. We know that B fails if A asks the private key associated to the guessed identity during the simulation. We also know that there are $\binom{n_H}{2}$ pairs of identities, at least one of them will never be the subject of a key extraction query from A. Then, with the probability at least $1/\binom{n_H}{2}$, A does not ask the key extraction of the guessed identities ID_I and ID_J. Further, the probability A’s challenge identities are the guessed identity pair (ID_I, ID_J) is $1/\binom{n_H}{2}$. If A has never queries $H_3(p)$ for $p = (H_2(xyp), \hat{e}(P, P)^{abc})$ then A’s view is independent of M, so in this case A is unable to tell that it is in a simulation, and has no advantage. Hence, the probability that A queries $H_3(p)$ is at least ϵ. If A has queries $H_3(p)$ then it may be able to distinguish the simulation from the real life, but p will be cached on L_p. B wins if he guesses the correct element of L_p to output. But, the size of this list is bounded by q_H^2. Therefore, $Adv(B) \geq \epsilon/\binom{n_H}{2}^2 q_H^2$. □

5. Comparison

The following table gives a comparison between our scheme and other schemes in terms of efficiency and security properties. Security is indicated as follows: Authentication, without key Escrow, ciphertext Unforgeability, and message Confidentiality.
186 YOUNG-RAN LEE AND HYANG-SOOK LEE

<table>
<thead>
<tr>
<th>scheme</th>
<th># pairings</th>
<th># multi</th>
<th># expn</th>
<th>Authen.</th>
<th>Escrow</th>
<th>Unforge</th>
<th>Conf</th>
</tr>
</thead>
<tbody>
<tr>
<td>BF [2, 3]</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>O</td>
</tr>
<tr>
<td>L [13]</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>AP [1]</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>O(half)*</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>our scheme</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>O**</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

* The scheme satisfies only unilateral authentication.
** Two real-time communicating parties mutually assure each other’s identity.

6. Conclusions

In this paper, we proposed an authenticated public key encryption scheme. We provided proofs of confidentiality and existential unforgeability under the Bilinear Diffie-Hellman and the Computational Diffie-Hellman assumptions.

The scheme presented in [1] is somewhat similar to our construction. However, our scheme satisfies mutual authentication, while Al-Riyami and Paterson’s scheme provided only unilateral authentication. Moreover, two communicating parties in our model perform encryption/decryption by using a Diffie-Hellman shared secret from their ephemeral contribution.

References

DEPARTMENT OF MATHEMATICS, Ewha Womans University, 120-750, Seoul, Korea