APPROXIMATION-SOLVABILITY OF
A CLASS OF A-MONOTONE VARIATIONAL
INCLUSION PROBLEMS

RAM U. VERMA

ABSTRACT. First the notion of the A-monotonicity is applied to the approximation-solvability of a class of nonlinear variational inclusion problems, and then the convergence analysis is given based on a projection-like method. Results generalize nonlinear variational inclusions involving H-monotone mappings in the Hilbert space setting.

1. Introduction and Preliminaries

Based on the notion of the A-monotonicity, recently the author [8] studied a new class of variational inclusion problems, including hemivariational inclusion problems applied to engineering and mechanics. The obtained results generalize some variational inclusion problems introduced and studied by Fang and Huang [2]. They solved nonlinear variational problems applying the resolvent operator technique. These notions have energized the theory of maximal monotone mappings in general. In this paper consider applications of A-monotone mappings to the approximation-solvability of a class of nonlinear variational inclusions in a Hilbert space setting. The convergence analysis for the solution is based on a projection-like method. The obtained results generalize results on general maximal monotone and H-monotone mappings, including [2]. We have established some auxiliary results as well. For more details on the generalized monotonicity, we recommend [1-9].

AMS Subject Classification: 49D15, 65B05, 47H17
Key Words and Phrases: A-monotone mappings, Resolvent operator technique, Relaxed monotone mappings, Approximation-solvability, Projection-like methods.
Definition 1. [8] Let $A: X \to X^*$ be a mapping from a reflexive Banach space X into its dual X^* and $M: X \to \mathcal{P}(X^*)$ be another mapping from X into the power set $\mathcal{P}(X^*)$ of X^*. The map M is said to be A-monotone if M is m-relaxed monotone and $A + \rho M$ is maximal monotone for $\rho > 0$.

Definition 2. [2] Let $H: H \to H$ and $M: H \to 2^H$ be any two mappings on H. The map M is said to be H-monotone if M is monotone and $(H + \rho M)(H) = H$ holds for $\rho > 0$.

This is equivalent to stating that $H + \rho M$ is maximal monotone if M is monotone and $H + \rho M$ is maximal monotone. If H is strictly monotone and M is H-monotone, then M is maximal monotone.

Let the resolvent operator $J_{H,M}^\rho: H \to H$ be defined by

$$J_{H,M}^\rho(u) = (H + \rho M)^{-1}(u) \quad \forall \ u \in H.$$

On the top of that, if H is r-strongly monotone and M is H-monotone, then the resolvent operator $J_{H,M}^\rho$ is $(1/r)$-Lipschitz continuous for $r > 0$. From now on, $\mathcal{P}(H)$ shall denote the power set 2^H.

Definition 3. A mapping $T: H \to H$ is said to be:

(i) r-strongly monotone with respect to A if there exists a positive constant r such that

$$\langle T(x) - T(y), A(x) - A(y) \rangle \geq ||x - y||^2 \quad \forall \ x, y \in H.$$

(ii) r-strongly monotone if there exists a positive constant r such that

$$\langle T(x) - T(y), x - y \rangle \geq r \ ||x - y||^2 \quad \forall \ x, y \in H.$$

(iii) m-relaxed monotone if there is a positive constant m such that

$$\langle T(x) - T(y), x - y \rangle \geq (-m) ||x - y||^2 \quad \forall \ x, y \in H.$$

(iv) (γ, s)-relaxed cocoercive with respect to A if there exist positive constants γ and s such that

$$\langle T(x) - T(y), A(x) - A(y) \rangle \geq (-\gamma) ||T(x) - T(y)||^2 + s \ ||x - y||^2 \quad \forall \ x, y \in H.$$
Lemma 1. Let \(A: H \to H \) be \(r \)-strongly monotone and \(M: H \to P(H) \) be \(A \)-monotone. Then the resolvent operator \(J^\rho_{A,M}(u): H \to H \) is \([1/(r - \rho m)]\)-Lipschitz continuous for \(0 < \rho < r/m \), where \(r, \rho \) and \(m \) are positive constants.

Proof. For any \(u, v \in H \), we have from the definition of the resolvent operator that

\[
J^\rho_{A,M}(u) = (A + \rho M)^{-1}(u)
\]

\[
J^\rho_{A,M}(v) = (A + \rho M)^{-1}(v).
\]

It follows that

\[
(1/\rho)[u - A(J^\rho_{A,M}(u))] \in M(J^\rho_{A,M}(u))
\]

\[
(1/\rho)[v - A(J^\rho_{A,M}(v))] \in M(J^\rho_{A,M}(v)).
\]

Since \(M \) is \(A \)-monotone (and hence \(m \)-relaxed monotone), it implies that

\[
(1/\rho)<u - A(J^\rho_{A,M}(u)) - [v - A(J^\rho_{A,M}(v))], J^\rho_{A,M}(u) - J^\rho_{A,M}(v)> \geq (-m)\| J^\rho_{A,M}(u) - J^\rho_{A,M}(v) \|^2.
\]

As a result, we have

\[
\| u - v \| \| J^\rho_{A,M}(u) - J^\rho_{A,M}(v) \| \geq <u - v, J^\rho_{A,M}(u) - J^\rho_{A,M}(v)>
\]

\[
\geq <A(J^\rho_{A,M}(u)) - A(J^\rho_{A,M}(v)), J^\rho_{A,M}(u) - J^\rho_{A,M}(v)>
\]

\[
- \rho m \| J^\rho_{A,M}(u) - J^\rho_{A,M}(v) \|^2
\]

\[
\geq r \| J^\rho_{A,M}(u) - J^\rho_{A,M}(v) \|^2 - \rho m \| J^\rho_{A,M}(u) - J^\rho_{A,M}(v) \|^2
\]

\[
= (r - \rho m) \| J^\rho_{A,M}(u) - J^\rho_{A,M}(v) \|^2.
\]
Lemma 2. Let $M: H \to P(H)$ be A-monotone. Then the resolvent operator $J_{\rho}^{H,M}(u) := (I + \rho M)^{-1}: H \to H$ is $[1/(1 - \rho m)]$-Lipschitz continuous for $0 < \rho < 1/m$, where ρ and m are positive constants and I is the identity mapping.

Lemma 3. Let $H: H \to H$ be r-strongly monotone and $M: H \to P(H)$ be H-monotone. Then the resolvent operator $J_{\rho}^{H,M}(u): H \to H$ is r-cocoercive.

Proof. For any $u, v \in H$, we have from the definition of the resolvent operator that

$$J_{\rho}^{H,M}(u) = (H + \rho M)^{-1}(u)$$

$$J_{\rho}^{H,M}(v) = (H + \rho M)^{-1}(v).$$

It follows that

$$(1/\rho)[u - H(J_{\rho}^{H,M}(u))] \in M(J_{\rho}^{H,M}(u))$$

$$(1/\rho)[v - H(J_{\rho}^{H,M}(v))] \in M(J_{\rho}^{H,M}(v)).$$

Since M is H-monotone and H is r-strongly monotone, it implies that

$$< u - v, J_{\rho}^{H,M}(u) - J_{\rho}^{H,M}(v)> \geq 0.$$

As a result, we have

$$< u - v, J_{\rho}^{H,M}(u) - J_{\rho}^{H,M}(v)> \geq r ||J_{\rho}^{H,M}(u) - J_{\rho}^{H,M}(v)||^2.$$

For $H = I$ and $r \leq 1$, $J_{\rho}^{H,M}(u) = (I + \rho M)^{-1}: H \to H$ is 1-cocoercive.

Lemma 4. [2] Let $H: H \to H$ be r-strongly monotone and $M: H \to P(H)$ be H-monotone. Then the resolvent operator $J_{\rho}^{H,M}: H \to H$ is $(1/r)$-Lipschitz continuous for a positive constant r.

Lemma 5. Let $A: H \to H$ be r-strongly monotone and $M: H \to P(H)$ be A-monotone. Then the resolvent operator $J_{\rho}^{A,M}: H \to H$ is $(r - \rho m)$-cocoercive for $0 < \rho < r/m$, where r, ρ and m are positive constants.

Proof. For any $u, v \in H$, we have from the definition of the resolvent operator that
\[J_{\rho, A, M}(u) = (A + \rho M)^{-1}(u) \]

\[J_{\rho, A, M}(v) = (A + \rho M)^{-1}(v). \]

It follows that

\[\frac{1}{\rho}[u - A(J_{\rho, A, M}(u))] \in M(J_{\rho, A, M}(u)) \]

\[\frac{1}{\rho}[v - A(J_{\rho, A, M}(v))] \in M(J_{\rho, A, M}(v)). \]

Since \(M \) is \(A \)-monotone (and hence \(m \)-relaxed monotone), it implies that

\[\frac{1}{\rho} [u - A(J_{\rho, A, M}(u)) - v + A(J_{\rho, A, M}(v))] \geq (-m) \| J_{\rho, A, M}(u) - J_{\rho, A, M}(v) \|^2. \]

As a result, we have

\[< u - v, J_{\rho, A, M}(u) - J_{\rho, A, M}(v)> \geq < A(J_{\rho, A, M}(u)) - A(J_{\rho, A, M}(v)), J_{\rho, A, M}(u) - J_{\rho, A, M}(v)> \]

\[- \rho m \| J_{\rho, A, M}(u) - J_{\rho, A, M}(v) \|^2 \]

\[\geq r \| J_{\rho, A, M}(u) - J_{\rho, A, M}(v) \|^2 - \rho m \| J_{\rho, A, M}(u) - J_{\rho, A, M}(v) \|^2 \]

\[= (r - \rho m) \| J_{\rho, A, M}(u) - J_{\rho, A, M}(v) \|^2. \]

Example 1. [3, Lemma 7.11] Let \(X \) be a reflexive Banach space and \(X^* \) its dual. Suppose that \(f: X \to \mathbb{R} \) is \(m \)-strongly monotone and \(f: X \to \mathbb{R} \) is locally Lipschitz such that \(\partial f \) is \(\alpha \)-relaxed monotone. Then \(\partial f \) is \(A \)-monotone (i.e., \(A + \partial f \) is maximal monotone for \(m - \alpha > 0 \), where \(m, \alpha > 0 \)) for \(\rho = 1 \). Since \(A \) is \(m \)-strongly monotone and \(\partial f \) is \(\alpha \)-relaxed monotone, it implies that \(A + \partial f \) is \((m - \alpha) \)-strongly monotone. It further follows that \(A + \partial f \) is pseudomonotone one and hence \(A + \partial f \) is, in fact, maximal monotone.

Example 2. [5, Theorem 4.1] Let \(X \) be a reflexive Banach space and \(X^* \) its dual. Let \(A: X \to X^* \) be \(a \)-strongly monotone and \(B: X \to X^* \) be \(c \)-strongly Lipschitz continuous. Let \(f: X \to \mathbb{R} \) be locally Lipschitz such that \(\partial f \) is relaxed \(\alpha \)-monotone. Then \(\partial f \) is \((A - B) \)-monotone (i.e., \(A - B + \partial f \) is maximal monotone for \(-c - \alpha > 0 \)) for \(\rho = 1 \).
Let H be a real Hilbert space and let A be a nonempty closed convex subset of H. Let $T : H \to H$ be a nonlinear mapping. Let $A : H \to H$ and $M : H \to \mathcal{P}(H)$ be any mappings. Then the problem of finding $a \in H$ such that

$$0 \in T(a) + M(a)$$

is called the nonlinear variational inclusion (NVI) problem.

Let $f : H \to \mathbb{R}$ be a locally Lipschitz continuous function and $\partial f : H \to \mathcal{P}(H)$ be m-relaxed monotone. Then for $M = \partial f$, the NVI (1) problem reduces to: find an element $a \in H$ such that

$$0 \in T(a) + \partial f(a).$$

If $f : H \to \mathbb{R}$ is proper, convex and lower semicontinuous, and $f'(x)$ denotes the gradient of f at x such that $M(x) = \partial f(x)$ for all $x \in H$, then problem (1) reduces to: find an element $a \in A$ such that

$$< T(a), x - a > + < f'(a), x - a > \geq 0 \quad \forall \ x \in H, \quad (3)$$

where A is a nonempty closed convex subset of H.

It follows from (3) that

$$< T(a), x - a > + f(x) - f(a) > \geq 0 \quad \forall \ x \in H. \quad (4)$$

When $M(x) = \partial A(x)$ for all $x \in A$, where A is a nonempty closed convex subset of H and ∂A denotes the indicator function of A, the NVI (1) problem reduces to the problem: determine an element $a \in A$ such that

$$< T(a), x - a > \geq 0 \quad \forall \ x \in A. \quad (5)$$

Let $f : H \to \mathbb{R} \cup \{\pm \infty\}$ be a functional on H. A functional $x^* \in H$ is a subgradient of f at u iff

$$f(u) \neq \mp \infty \text{ and } f(v) \geq f(u) + < x^*, v - u > \quad \forall \ v \in H.$$

The set of all subgradients of f at u, denoted $\partial f(u)$, is called the subdifferential at u. If there exists no subgradients, then $\partial f(u) = \emptyset$.

A function $f : H \to \mathbb{R} \cup \{\pm \infty\}$ is said to be one-sided directional Gâteaux-differentiable at x^* if there is the $f'(x^*, h)$ such that
\[
\lim_{\mu \to 0} \left[f(x^* + \mu h) - f(x^*) \right]/\mu = f'(x^*, h) \quad \forall h \in H.
\]

If \(f \) is convex, then \(f \) is one-sided directional Gâteaux-differentiable at every point \(x \in H \) with \(h f(x) \neq \mp \infty \). On the top of that, we have

\[
f(x) - f(u) \geq f'(u, x - u) \quad \forall x \in H,
\]

and

\[
f'(u, x - u) \geq - f'(u, -(x - u)) \quad \forall x \in H.
\]

A function \(f: H \to \mathbb{R} \cup \{\pm \infty\} \) is called locally Lipschitz at \(x \) if a neighborhood \(U \) of \(x \) exists such that \(f \) is finite on \(U \) and

\[
\left| f(x) - f(y) \right| \leq c \|x - y\| \quad \forall x \in H,
\]

where \(c \) is a positive constant depending on \(U \).

Next we define the generalized directional differential (in the sense of Clarke) of \(f \) at \(x \) in the direction \(y \), denoted \(f^\delta(x, y) \), by

\[
\lim_{\mu \to 0^+, h \to 0} \frac{[f(x + h + \mu y) - f(x + h)]}{\mu} = f^\delta(x, y).
\]

The corresponding generalized gradient of \(f \) at \(x \), denoted by \(\partial f(x) \), is defined by

\[
\partial f(x) = \{x^*: x^* \in H, f^\delta(x, y - x) \geq < x^*, y - x > \quad \forall y \in H\},
\]

where \(\partial f: H \to 2^H \). If we set \(M(x) = \partial f(x) \) in (1), then it reduces to a constrained problem: find an element \(a \in H \) such that

\[
<T(a), x - a > + f^\delta(a, x - a) \geq 0 \quad \forall x \in H, \tag{6}
\]

Let \(B(u_0, r) \) denote the closed ball in \(H \) defined by

\[
B(u_0, r) = \{v \in H: \|u_0 - v\| \leq r \text{ for } r > 0\},
\]

where \(u_0 \) is the center and \(r \) is the radius. Let \(A \) be a closed and star-shaped subset of \(H \) with respect to \(B(u_0, r) \). \(A \) is star-shaped with respect to \(B(u_0, r) \) if

\[
v \in A \iff \lambda v + (1 - \lambda)w \in A \text{ for any } \lambda \in [0, 1] \text{ and } w \in B(u_0, r).
\]

Let \(d_\lambda : H \to \mathbb{R} \) denote the distance function of \(A \) defined by
Further more, let $T_A(u)$ denote Clarke’s tangent cone of A at u, which is defined by

$$T_A(u) = \{ k \in H : \forall u_n \to u, \ u_n \in A, \ \forall \lambda_n \to 0, \ \text{there exists} \ k_n \to k \ \text{such that} \ u_n + \lambda_n k_n \in A \}.$$

Note that $T_A(u)$ is a closed convex cone and it always contains zero. Now if we set $M(x) = \partial \delta(T_A(x))$, where $\delta(T_A)$ denotes the indicator function of $T_A(x)$, then the NVI (1) problem reduces to: find an element $a \in A$ such that

$$< T(a), k > \geq 0 \ \forall k \in T_A(a).$$

(7)

Since A is not convex, the problem (7) is called a constrained hemivariational inequality (N HI) problem. Clearly, the NHI (7) problem reduces to the NVI (5) problem when A is convex.

Lemma 6. Let H be a real Hilbert space, let $A: H \to H$ be strictly monotone, and $M: H \to 2^H$ be A-monotone. Then an element $a \in H$ is a solution to the NVI (1) problem iff a satisfies

$$a = J^\rho_{A,M}[A(a) - \rho T(a)],$$

(8)

where $T: H \to H$ is any mapping on H and ρ is a positive constant.

Theorem 1. Let H be a real Hilbert space. Let $A: H \to H$ be r-strongly monotone and α-Lipschitz continuous. Let $M: H \to P(H)$ be A-monotone. Suppose that $T: H \to H$ is a mapping such that T is (s)-strongly monotone with respect to A and μ-Lipschitz continuous. If, in addition, there exists a constant $\rho > 0$ such that

$$\sqrt{\alpha^2 2ps + \rho^2 \mu^2} < r - \rho \mu,$$

then the NVI (1) problem has a unique solution.

Proof. For $u, v \in H$, let us define a mapping $\Lambda: H \to H$ by

$$\Lambda(u) = J^\rho_{A,M}(A(u) - \rho T(u)).$$

Then we have

$$\|\Lambda(u) - \Lambda(v)\| = \|J^\rho_{A,M}(A(u) - \rho T(u)) - J^\rho_{A,M}(A(v) - \rho T(v))\|$$

$$\leq \left[\frac{1}{(r - \rho \mu)} \right] \| (A(u) - \rho T(u)) - (A(v) - \rho T(v)) \|. $$
It follows that
\[\| A(u) - A(v) - \rho (T(u) - T(v)) \|^2 = \| A(u) - A(v) \|^2 + \rho^2 \| T(u) - T(v) \|^2 - 2\rho \langle A(u) - A(v), T(u) - T(v) \rangle \]
\[\leq \alpha^2 \| u - v \|^2 + \rho^2 \mu^2 \| u - v \|^2 - 2\rho \| u - v \|^2 + 2\rho \gamma \| T(u) - T(v) \|^2 \]
\[= (\alpha^2 - 2\rho \| u - v \|) \| u - v \|^2 . \]
Hence,
\[\Lambda(u) - \Lambda(v) \leq \frac{\theta}{r - \rho m} \| u - v \| , \]
where \(\theta = \sqrt{\alpha^2 - 2\rho \mu^2} < r - \rho m \).

Hence, \(\Lambda: H \to H \) is a contraction for \(0 < \rho < r/m \). This implies that there exists a unique element \(a \in H \) such that
\[\Lambda(a) = a, \]
that means,
\[a = J_{\rho A, M}^\rho (A(a) - \rho T(a)). \]
It follows from Lemma 6 that \(a \) is a unique solution to the NVI (1) problem.

Corollary 1. Let \(H \) be a real Hilbert space. Let \(A: H \to H \) be \(r \)-strongly monotone and \(\alpha \)-Lipschitz continuous. Let \(\partial f: H \to P(H) \) be \(A \)-monotone. Suppose that \(T: H \to H \) is \((s) \)-strongly monotone with respect to \(A \) and \(\mu \)-Lipschitz continuous. If, in addition, there exists a constant \(\rho > 0 \) such that
\[\sqrt{\alpha^2 - 2\rho \mu^2} < r - \rho m, \]
then the NVI (2) problem has a unique solution.

Corollary 2. Let \(H \) be a real Hilbert space. Let \(H: H \to H \) be \(r \)-strongly monotone and \(\alpha \)-Lipschitz continuous. Let \(M: H \to P(H) \) be \(H \)-monotone. Suppose that \(T: H \to H \) is a mapping such that \(T \) is \((s) \)-strongly monotone with respect to \(H \) and \(\mu \)-Lipschitz continuous. If, in addition, there exists a constant \(\rho > 0 \) such that
\[
\sqrt{\alpha^2 2ps + \rho^2 \mu^2} < r,
\]
then the NVI (1) problem has a unique solution.

2. Convergence Analysis

In this section, we apply a projection-type iterative algorithm to approximate the unique solution to the NVI (1) problem.

Algorithm 1. For an arbitrarily chosen initial point \(a^0 \in H \), compute the sequence \(\{a^k\} \) such that

\[
a^{k+1} = (1 - \alpha^k) a^k + \alpha^k \mathcal{J}_{\mathcal{P}_{A,M}}[A(a^k) - \rho T(a^k)] \quad \text{for } k \geq 0,
\]

where the sequence \(\{\alpha^k\} \) satisfies

\[
0 \leq \alpha^k < 1 \quad \text{and} \quad \sum_{k=0}^{\infty} \alpha^k = \infty.
\]

Theorem 2. Let \(H \) be a real Hilbert space. Let \(A: H \rightarrow H \) be \(r \)-strongly monotone with respect to \(A \) and \(\alpha \)-Lipschitz continuous. Let \(M: H \rightarrow \mathcal{P}(H) \) be \(A \)-monotone. Suppose that \(T: H \rightarrow H \) is a mapping such that \(T \) is \((s)\)-strongly monotone with respect to \(A \) and \(\mu \)-Lipschitz continuous. If, in addition, there exists a constant \(\rho > 0 \) such that

\[
\sqrt{\alpha^2 2ps + \rho^2 \mu^2} < r - \rho m \quad \text{for} \quad \rho < r/m,
\]

and the sequence \(\{a^k\} \) is generated by Algorithm 1, then the sequence \(\{a^k\} \) converges to a unique solution to the NVI (1) problem.

Proof. Since in Theorem 1, it is shown that an element \(a \in H \) is the unique solution to the NVI (1) problem, we have

\[
\|[a^{k+1}] - a\| = \| (1 - \alpha^k) a^k + \alpha^k \mathcal{J}_{\mathcal{P}_{A,M}}[A(a^k) - \rho T(a^k)] - (1 - \alpha^k) a - \alpha^k \mathcal{J}_{\mathcal{P}_{A,M}}[A(a) - \rho T(a)] \|
\]

\[
\leq (1 - \alpha^k) \|[a^k] - a\| + \alpha^k \|[\mathcal{J}_{\mathcal{P}_{A,M}}[A(a^k) - \rho T(a^k)] - \mathcal{J}_{\mathcal{P}_{A,M}}[A(a) - \rho T(a)]\|
\]

\[
\leq (1 - \alpha^k) \|[a^k] - a\| + \alpha^k / (r - \rho m) \|[A(a^k) - A(a) - \rho (T(a^k) - T(a))]\|
\]

\[
\leq (1 - \alpha^k) \|[a^k] - a\| + \alpha^k / (r - \rho m) \sqrt{\alpha^2 2ps + \rho^2 \mu^2} \|[a^k] - a\|
\]
\[
\begin{align*}
&= \{1 - \alpha^k + [\alpha^k/(r - \rho m)]\theta\} \| (a^k - a) \| \\
&= [1 - \alpha^k + (\alpha^k/(r - \rho m))\theta] \| (a^k - a) \| \\
&= \{1 -(1 - \Theta)\alpha^k\} \| (a^k - a) \| \\
&\leq \Pi_{j=0}^k \{1 -(1 - \Theta)\alpha^j\} \| (a^0 - a) \|,
\end{align*}
\]

where $\Theta < 1$ for $\Theta = \theta/(r - \rho m)$ and for

\[
\sqrt{\alpha^2 ps + \rho^2 \mu^2} < r - \rho m.
\]

Since $\Theta < 1$ and $\sum_{k=0}^{\infty} \alpha^k$ is divergent, it implies from [9] that

\[
\lim_{k \to \infty} \Pi_{j=0}^k \{1 -(1 - \Theta)\alpha^j\} = 0.
\]

Now it follows from (5) that the sequence $\{a^k\}$ converges to a, the unique solution to the NVI (1) problem.

References

International Publications
5066 Jamieson Drive, Suite B-9
Toledo, Ohio 43613, USA
http://www.internationalpubls.com/journals
verma99@msn.co