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LIMIT STATES OF STATIONARY MARKOV CHAINS

KEONHEE LEE AND YONG ZHANG

Abstract. We give the formula of the limits states of stationary Markov

chains.

1. Introduction

Markov chains have become a standard topic in probability and a useful tool in
many applications. See [1] P342-427 and references there.

One of the most important results in Markov chains is the existence of an in-
variant probability distribution of the irreducible Markov Chain. This invariant
probability distribution corresponds to the limit theorem about irreducible stochas-
tic matrices. In this paper, we will generalize the limit theorem to any stochastic
matrices, not just irreducible ones.

The notion of stochastic matrix comes from Markov Chain. An experiment has
k distinct states s1, s2, · · · , sk. Suppose we know that the probability of the
experimental outcomes sj is always pi,j when starting from the state si. Then this
transition matrix P = (pi,j)1≤i,j≤k has the following property:

(1.1)
∑

j

pi,j = 1, ∀ i.

From this simple physics consideration, we have the following definition.

Definition 1.1. A k × k non-negative matrix P = (pi,j) is called stochastic if
(1.1) is satisfied. A non-negative vector v = (v1, · · · , vk) is called a probability
vector if

∑
i vi = 1.

Definition 1.2. A square, say k×k, stochastic matrix P = (pi,j) is called positive
(and write as P > 0) if pi,j > 0 for all i, j. The notations are the same for vectors.
A stochastic matrix P is called aperiodic is there exists an integer N ≥ 1 such that
PN > 0. A stochastic matrix P is called irreducible if for any pair (i, j), there
exists an integer n = n(i, j) ≥ 1 such that p

(n)
i,j > 0 where p

(n)
i,j is the (i, j)-element

of Pn

The following result is well known. For a proof, we refer to [3].

Theorem 1.1. If a stochastic matrix P ≥ 0 is irreducible, then 1 is a simple
eigenvalue with a positive eigenvector. And 1 is the only eigenvalue with a non-
negative eigenvector.
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Remark 1.1. If a stochastic matrix P is irreducible, from Theorem 1.1, there exists
a unique left (resp. right) probability eigenvector of 1. We call it as the left
(right resp.) probability eigenvector of P .

Now we will state two classical limit theorems about stochastic matrices whose
proofs are in [3].

Theorem 1.2. (Limit theorem for aperiodic stochastic matrix). Suppose that P is
an k × k aperiodic stochastic matrix. Then we have

lim
n→+∞

Pn = eT p,

where e =

k︷ ︸︸ ︷
(1, · · · , 1), p is the unique left probability eigenvector of P . And the

(p, P ) Markov shift is mixing.

Remark 1.2. In the case that P is aperiodic, the i-coordinate of p, pi is the
probability that the system will, in the limit, be the state si. And it is independent
of the initial states of the experiment. That is, for any probability vector q, we have

qPn → qP∞ = qeT p = p.

Theorem 1.3. (Limit theorem for irreducible stochastic matrix). Suppose that P

is an irreducible k × k stochastic matrix. Then we have

lim
n→+∞

1
n

n−1∑

i=0

P i = eT p,

where e =

k︷ ︸︸ ︷
(1, · · · , 1), p is the unique left probability eigenvector of P . And the

(p, P ) Markov shift is ergodic.

2. Main Theorems

The goal of this paper is to generalize the previous two limit theorems to any
stochastic matrices.

At first we will introduce the notion of quasi-stochastic matrix which will be
used in the proof of our results. A non-negative k × k matrix Q = (qi,j) is called
quasi-stochastic if either k = 1 and Q = (q) < 1 or k ≥ 2 and Q is irreducible
which satisfies for all i, ∑

j

qi,j ≤ 1

and for some 1 ≤ i0 ≤ k, ∑

j

qi0,j < 1.

Proposition 2.1. Let Q be a quasi-stochastic matrix. Then the spectral radius of
Q, ρ(Q), is strictly less than 1.

For proving the result, we need the classical Perron-Frobenious theorem (for its
proof and many applications, we refer to [2]):
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Theorem 2.1. (Perron-Frobenious Theorem) Let A be a non-negative k×k matrix,
ρ = ρ(A) its spectral radius. Then the following hold:

(i) ρ is an eigenvalue of A with a non-negative eigenvector.
(ii) If A is aperiodic, then the absolute value of any other eigenvalue is strictly

less that ρ.
(iii) If A is irreducible, then ρ is a simple eigenvalue of A with a strictly positive

eigenvector.

Proof of Proposition 2.1. From the Perron-Frobenius theorem, there exists
a strictly positive probability left eigenvector q of ρ. From qQ = ρq, we have

ρ =
∑

j

ρqj =
∑

i,j

qiqi,j =
∑

i

qi

∑

j

qi,j <
∑

i

qi = 1.

¤
Fix any stochastic matrix P = (pi,j)1≤i,j≤k for k ≥ 2 and let S = {s1, · · · , sk}

be a set of k states. We introduce a directed graph on S by si → sj if and
only if pi,j > 0. The directed graph would have several connected components
in general. For the Markov chain on each connected component is independent,
we will study each component separately. Thus we may assume that the directed
graph is connected.

First we introduce an equivalent relation “ ∼ ” on S by the direction →. We say
that si ∼ sj if and only if there exist i1, · · · , in such that

si → si1 → si2 → · · · → sin → sj

and there exist j1, · · · , jm such that

sj → sj1 → sj2 → · · · → sjm → si.

It is easy to see that ∼ is an equivalent relation on S. An equivalent class of ∼
is called a block. We denote the blocks by B1, · · · , Bl. Now we have direction
among these blocks defined by Bi → Bj if and only if there exist some si0 ∈ Bi

and some sj0 ∈ Bj with si0 → sj0 . It is easy to see that with the direction, the
set of blocks, {B1, · · · , Bl}, becomes a connected directed graph without cycle.
Consequently, the set of blocks {B1, · · · , Bl} becomes a connected directed tree
with the direction “ → ”.

We say that a block B is in the first level if there no direction from B to any
other blocks. We say that a block B which is not in the first level is in the second
level if it has and only has directions from it to some blocks in the first level. A
block B which is not in the first two level is said to be in the third level if it has
and only has directions from it to some blocks in the first two levels. Similarly, we
can introduce the notion of i-th level for i ∈ N.

Next, we classify the blocks into levels. For this, we rearrange the blocks as
following: First we put the blocks of the first level, and then the blocks of the
second level, and so on.

Suppose that {B1, · · · , Bl} has r levels, and the number of blocks of the i-th
level is n(i) for each i = 1, · · · , r. Let {Bi,1, · · · , Bi,n(i)} be the set of blocks of
the i-th level. Let {t1, · · · , tk} be the arrangement of {s1, · · · , sk} corresponding to
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the previous rearrangement of the blocks. We will also denote the corresponding
stochastic matrix by P . Then P has the following diagonal form:




0
BB@

A1,1 0 0

0
. . . 0

0 0 A1,n(1)

1
CCA 0 0 0

.

..

0
BB@

A2,1 0 0

0
. . . 0

0 0 A2,n(2)

1
CCA 0 0

.

..
.
..

. . . 0

...
...

...

0
BB@

Ar,1 0 0

0
. . . 0

0 0 Ar,n(r)

1
CCA




,

where Ai,j is the corresponding transition matrix of the block Bi,j . For i = 1, that
is, when the block B1,j is in the first level, A1,j is an irreducible stochastic matrix.
For i ≥ 2, that is, the block Bi,j is not in the first level, Ai,j is a quasi-stochastic
matrix. By Theorem 1.3, for any 1 ≤ j ≤ n(1),

lim
N→+∞

1
N

N−1∑
n=0

An
1,j = A∞j = eT

1,jp1,j ,

where e1,j =

n1,j︷ ︸︸ ︷
(1, · · · , 1), p1,j is the unique left probability eigenvector of A1,j , and

n1,j is the number of states in the block B1,j .
Denote by D the matrix







A2,1 0 0

0
. . . 0

0 0 A2,n(2)


 0 0

...
. . . 0

...
...




Al,1 0 0

0
. . . 0

0 0 Al,n(l)







.

We have the decomposition of P by







A1,1 0 0

0
. . . 0

0 0 A1,n(1)


 0

C1 · · · Cn(1) D


 .
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We also decompose Pn by






An
1,1 0 0

0
. . . 0

0 0 An
1,n(1)


 0

C
(n)
1 · · · C

(n)
n(1)

Dn




.

¿From these preparing, we can state our theorems as following.

Theorem 2.2. Let P be any stochastic matrix. p(1,j) and e(1,j) are as before. Then
we have

lim
n→+∞

Dn = 0,

lim
N→+∞

1
N

N−1∑
n=0

An
1,i = eT

(1,i)p(1,i),

and

lim
N→+∞

1
N

N−1∑
n=0

C
(n)
i = (1−D)−1Cie

T
(1,i)p(1,i)

for 1 ≤ i ≤ n(1).

Theorem 2.3. Moreover, if A1,i are aperiodic for all 1 ≤ i ≤ n(1), we have

lim
n→+∞

C
(n)
i = (1−D)−1Cie

T
(1,i)p(1,i)

for 1 ≤ i ≤ n(1).

Corollary 2.1. If there is only one block B in the first level, and the corresponding
transition matrix, A, is aperiodic, we have

lim
n→+∞

Cn = e⊥2 p,

where e2 =

k−m︷ ︸︸ ︷
(1, · · · , 1), p is the unique left eigenvector of A, and m is the number

of states in the block B.

For simplicity, we will prove Theorem 2.2. The proof of Theorem 2.1 is similar
to that of Theorem 2.2.

The Proof of Theorem 2.2. It is easy to see that every diagonal matrix Ai,j

in B is quasi-stochastic for i ≥ 2, 1 ≤ j ≤ n(i) . By Proposition 2.1, the spectral
radius of Ai,j , ρ(Ai,j), is less than 1. So the spectral radius of D, ρ(D), is less than
1. Thus, there exist constant M > 0 and 0 ≤ λ < 1 such that

‖Dn‖ ≤ Mλn

for all n ≥ 1. Here ‖ ‖ is the operator norm of matrix.
For simplicity, we will denote A1,i by Ai for 1 ≤ i ≤ n(1). By computation, we

have that

C
(n)
i = CiA

n−1
i + DCiA

n−2
i + · · ·+ Dn−2CiAi + Dn−1Ci
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for all n ≥ 1 and i = 1, 2.
For all 1 ≤ i ≤ n(1), let A∞i = eT

(1,i)p(1,i). By Theorem 1.3, we have

lim
n

An
i = A∞i .

Thus, {An
i } is bounded. There exists K > 0 such that ‖An

i ‖ ≤ K for all 1 ≤ n ≤ ∞,
1 ≤ i ≤ n(1).

Fix any ε > 0 and choose N1 > 0 with λN1 ≤ ε and

‖
∑

n≥N1+1

DnCA∞i ‖ ≤ ε

for 1 ≤ i ≤ n(1). Choose N2 > 0 (N2 ≥ N1) such that

‖An
i −A∞i ‖ ≤ ε

holds for any n ≥ N2 and 1 ≤ i ≤ n(1).
Then we have

‖C(n)
i − (CiA

∞
i + DCiA

∞
i + · · ·+ Dn−1CiA

∞
i )‖

= ‖(CiA
n−1
i + BCiA

n−2
i + · · ·+ Dn−N2−1CiA

N2
i )

+(Dn−N2CiA
N2−1
i + · · ·+ Dn−1Ci)

−((CiA
∞
i + DCiA

∞
i + · · ·+ Dn−N2−1CiA

∞
i )

+(Dn−N2CiA
∞
i + · · ·+ Dn−1CiA

∞
i ))‖

≤ (1 + Mλ + · · ·+ Mλn−N2−1)‖Ci‖ε
+2K‖Ci‖(Mλn−N2 + Mλn−N2+1 + · · ·+ Mλn−1)

≤ (1 +
Mλ

1− λ
)‖Ci‖ε + 2K‖Ci‖MλN1

1− λ
≤ K1ε,

for n ≥ 2N2.
Consequently, we get

‖C(n)
i − (1−D)−1Cie

T
(1,i)p(1,i)‖

= ‖C(n)
i −

+∞∑

j=0

DjCiA
∞
i ‖

≤ ‖C(n)
i −

n−1∑

j=0

DjCiA
∞
i ‖+ ‖

+∞∑

j=n

DjCiA
∞
i ‖

≤ (K1 + 1)ε

for any n ≥ 2N2.
For ε > 0 is arbitrary, we have proved that for all 1 ≤ i ≤ n(1),

lim
n→+∞

C
(n)
i = (1−D)−1CiA

∞
i ,

and so completes the proof. ¤
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Remark 2.1. The dimension of eigenspace of 1 of any stochastic matrix is the
number of the blocks in the first level. And every probability eigenvector of 1 is some
convex combination of the unique left probability eigenvectors pi corresponding to
the block Bi of the first level. So if 1 is a simple eigenvalue if and only if P is
connected and there is only one block in the first level.

Remark 2.2. Suppose that P is connected, then there exists a positive probability
left eigenvector of P if and only if P is irreducible. When P is not connected, then
there exists a positive probability left eigenvector of P if and only if the transition
matrix of every connected component is irreducible.
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