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A NECESSARY AND SUFFICIENT CONDITION FOR THE
EXISTENCE OF DOMINATED SPLITTING WITH A GIVEN

INDEX

SHAOBO GAN

Abstract. A C1 diffeomorphism φ on a compact boundaryless manifold is

said to exhibit an i-eigenvalue gap if for every periodic point x of φ, the

modulus of i-th eigenvalue of Dφn(x) is strictly less than the modulus of

(i + 1)-th eigenvalue of Dφn(x), where n is the period of x. We prove that φ

has a dominated splitting of index i over the set of preperiodic points if and

only if there exists a C1 neighborhood U of φ such that every ψ ∈ U exhibits

an i-eigenvalue gap.

1. Introduction

Let M be a d-dimensional compact Riemannian manifold without boundary (d ≥
2). Denote by Diff1(M) the set of diffeomorphisms endowed with the C1 topology.
Let φ ∈ Diff1(M) and Λ a compact invariant set of φ. A Dφ-invariant splitting
TΛM = E ⊕ F is called a dominated splitting of index i over Λ, if dim E(x) =
i, ∀x ∈ Λ and there exists l ∈ N such that ∀x ∈ Λ,

‖Dφl|E(x)‖ ‖Dφ−l|F (φlx)‖ ≤
1
2
.

The study of dominated splittings first appeared in [15, 16]. Subsequently, in
studying the stability conjecture, Liao [8, 9, 10] and Mañé [11, 12, 13] began their
systematic research on dominated splittings. (In Liao’s terminology, dominated
splitting is called “semi-hyperbolic splitting”.) See also [7] for invariant manifolds
related to dominated splittings. Recently, the study of dominated splittings, or
partially hyperbolic splittings, attracts more and more people (e.g., see [1, 2, 3, 4,
5, 17, 18, 20]).

To state our result precisely, we introduce some terminologies. Recall a point
x ∈ M is called (C1) preperiodic, if for any neighborhood U of φ in Diff1(M) and
any neighborhood U of x in M , there exist ψ ∈ U and y ∈ U such that y is a
periodic point of ψ ([19]). We denote by P∗(φ) the set of preperiodic points. P∗(φ)
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is closed and φ-invariant. Note that

Ω(φ) ⊂ P∗(φ) ⊂ CR(φ),

where Ω(φ) and CR(φ) denote the nonwandering set and chain recurrent set of φ

respectively. Specifically, a point x ∈ M is called (C1) i-preperiodic of φ, 0 ≤ i ≤ d,
if for any neighborhood U of φ in Diff1(M) and any neighborhood U of x in M ,
there exist ψ ∈ U and y ∈ U such that y is a hyperbolic periodic point of ψ with
index i. Denote by Pi

∗(φ) the set of i-preperiodic points of φ. Pi
∗(φ) is closed and

φ-invariant, for each 0 ≤ i ≤ d. Note that Pi
∗(φ) and Pj

∗(φ) may not be disjoint for
i 6= j.

It is proved in [20] that φ is far away from homoclinic tangency if and only if
for each i, 1 ≤ i ≤ d − 1, there is a dominated splitting of index i over Pi

∗(φ).
But as the author indicated, the following statement is not proved: For any given
i, 1 ≤ i ≤ d − 1, if φ is far away from homoclinic tangency related to hyperbolic
periodic orbit of index i then there is a dominated splitting of index i over Pi

∗(φ).
Motivated by this problem, we find a natural condition for the existence of

dominated splitting of a given index, which we call eigenvalue gap (or spectral
gap).

Given φ ∈ Diff1(M) and a periodic point x of φ, denote by λi(x) = λi(x, φ) the
eigenvalues of Dφn(x) such that

|λ1(x)| ≤ |λ2(x)| ≤ · · · ≤ |λd(x)|,
where n is the period of x. And we will call λi(x) the i-th eigenvalue of Dφn(x).
Given 1 ≤ i ≤ d − 1, φ is said to exhibit an i-eigenvalue gap at x, if |λi(x)| <

|λi+1(x)|. φ is said to exhibit an i-eigenvalue gap if for any periodic point x of φ, φ

exhibits an i-eigenvalue gap at x. Now we state our main results.

Theorem 1.1. Given φ ∈ Diff1(M), φ has a dominated splitting of index i over
P∗(φ) if and only if there exists a C1 neighborhood U of φ such that every ψ ∈ U
exhibits an i-eigenvalue gap.

Roughly, Theorem 1.1 says that if a diffeomorphism (C1) robustly exhibits an
i-eigenvalue gap, then it has a dominated splitting of index i.

Assume that Λ is a compact invariant set of φ. Denote by P∗(Λ, φ) the set
of points x ∈ Λ such that for any neighborhood U of φ in Diff1(M) and any
neighborhoods U of Λ and V of x in M , there exist ψ ∈ U and y ∈ V such that
y is a periodic point of ψ with Orb(x, ψ) ⊂ U . It is easily seen that P∗(Λ, φ) is
a compact invariant subset of Λ and when Λ = M , P∗(M,φ) = P∗(φ). A local
version of Theorem 1.1 is the following:

Theorem 1.2. Given φ ∈ Diff1(M) and a compact invariant set Λ of φ, φ has a
dominated splitting of index i over P∗(Λ, φ) if and only if there exist a C1 neighbor-
hood U of φ and a neighborhood U of Λ such that for any ψ ∈ U and any periodic
point x with Orb(x, ψ) ⊂ U , ψ exhibits an i-eigenvalue gap at x.

We would like to say some words about the relation of this paper and [3]. In [3],
Bonatti, Diaz and Pujals introduced the terminology of periodic linear system and
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developed lots of fundamental theory for periodic linear system, some of which will
be used in our paper. Restricted to the periodic linear systems without transitions,
the main difference of this paper and [3] is that complex-diagonalizable systems
should be considered in our case, while [3] only has to consider real-diagonalizable
systems with the help of transitions.

This paper is organized as follows. In §2, we first introduce the terminology of
periodic linear system and state some fundamental results in [3], and then reduce
the proof of the main results of the paper to the proof of Proposition 2.2, which is a
result about periodic linear systems. Even more, we only have to prove Proposition
2.5, the special case of Proposition 2.2 for simple periodic linear systems, i.e., for
systems consisting of only one periodic orbit. In §3, by using the technique of
reduction of dimension in [3], we give the proof of Proposition 2.5 by assuming
that it is proved for lower dimensional cases (d ≤ 4). Before proving Proposition
2.5 for d ≤ 4, we make some preparations in §4 and §5. §4 contains three general
results. The first is about the continuation of dominated splittings. The second says
that if a simple periodic linear system robustly exhibits an i-eigenvalue gap, then
there exists a uniform eigenvalue gap for the system and its small perturbations.
And the third one is a sufficient condition for the existence of dominated splitting,
involving the control of growth rate of norms and no small angles. In §5, we give
several perturbation lemmas for lower order matrices, including the only novelty
of the paper, Lemma 5.3, where we prove that for a 3 × 3 matrix, with a pair of
conjugate complex eigenvalues and a real eigenvalue, if the complex eigenvalues are
far away from the real axes and the angle between the eigenspace corresponding to
the complex eigenvalues and the eigenspace corresponding to the real eigenvalue is
arbitrary small, then an arbitrary small perturbation of the matrix will have three
eigenvalues with equal modulus. Also, we reformulate, in the form we need, a result
of Mañé ([12]) on the estimate of angles. This result will reduce the studying of
the case of two pairs of conjugate complex eigenvalues and small angle between two
eigenspaces. Finally, in §6, we give the proof of Proposition 2.5 for d ≤ 4.

To end the introduction, we suggest the experienced reader jump directly to §5,
which includes the essence of the paper.

2. Reduction to simple periodic linear systems

In this section, we will introduce the notation of (periodic) linear system and
then reduce the proof of Theorem 1.1 and Theorem 1.2 to the proof of Proposition
2.2. At the end of this section, we list some fundamental results in [3] for reference.

Let Σ be a set and f : Σ → Σ a 1-1 and onto mapping. Note that Σ equips no
topology (or the discrete topology).

Consider a d-dimensional Euclidean bundle E over Σ. “Euclidean” means that
for every x ∈ Σ, there is an inner product in the fibre E(x). Since Σ has discrete
topology, the bundle E is always trivial. If we take arbitrarily an orthonormal basis
in E(x) for every x ∈ Σ, E will be identified with Σ× Rd.
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A bounded bundle map A : E → E covering f : Σ → Σ is called a d-dimensional
linear system (or linear cocyle) over f . Precisely,

A(x, v) = (fx, A(x)v),

where A(x) is an isomorphism from E(x) to E(fx). A is called bounded if

‖A‖ = sup
x∈Σ

{‖A(x)‖, ‖A(x)−1‖} < ∞.

More precisely, we will call a 4-tuple (Σ, f, E , A) a linear system if A is bounded.
Given K ≥ 1, a linear system is bounded by K if ‖A‖ ≤ K. If we denote by 〈·, ·〉
the inner product on E , we will denote a linear system by a 5-tuple (Σ, f, E , A, 〈·, ·〉)
when necessary. When we use (Σ, f, E , A, 〈·, ·〉) to denote a linear system, E is
considered as a vector bundle instead of Euclidean bundle.

Denote by GL(Σ, f, E) the set of linear systems over f : Σ → Σ, equipped with
the following distance:

d(A,B) = sup
x∈Σ

{‖A(x)−B(x)‖, ‖A−1(x)−B−1(x)‖}.

If d(A, B) ≤ ε, B is called an ε-perturbation of A.

Remark 2.1. One may define another metric d′(·, ·) on GL(Σ, f, E) as follows:

d′(A, B) = sup
x∈Σ

{‖A(x)−B(x)‖}.

Note that since every A ∈ GL(Σ, f, E) is bounded, the two metrics d(·, ·) and
d′(·, ·) are locally equivalent, i.e., for every K ≥ 1, there exists C ≥ 1 such that if
A,B ∈ GL(Σ, f, E) with ‖A‖, ‖B‖ ≤ K then

d′(A,B) ≤ d(A,B) ≤ Cd′(A,B).

Sometimes we will not distinguish these two metrics.

f : Σ → Σ is called periodic if every point in Σ is a periodic point of f . If f is
periodic, an element A ∈ GL(Σ, f, E) is called a periodic linear system (abbreviated
as PLS). If Σ consists of only one periodic orbit of f , an element A ∈ GL(Σ, f, E)
is called a simple periodic linear system (abbreviated as SPLS) and we will call the
period of the system to be the period of the periodic orbit. In this paper we only
consider PLSs and even only SPLSs after this section.

Given a d-dimensional PLS (Σ, f, E , A) and x ∈ Σ, k ∈ Z, define Ak(x) : E(x) →
E(fkx) by

Ak(x) =





A(f (k−1)x) ◦ · · · ◦A(fx) ◦A(x), if k > 0,

I, if k = 0,

A−1(f (k+1)x) ◦ · · · ◦A−1(f−1x) ◦A−1(x), if k < 0.

Let λj(x) = λj(x,A), j = 1, 2, · · · , d, be the eigenvalues of An(x) such that

|λ1(x)| ≤ |λ2(x)| ≤ · · · ≤ |λd(x)|,
where n is the period of x. λj(x) is called the j-th eigenvalue of An(x). For some
1 ≤ i ≤ d− 1, we say A exhibits an i-eigenvalue gap at x, if |λi(x)| < |λi+1(x)| and
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A is said to exhibit an i-eigenvalue gap if A exhibits an i-eigenvalue gap at every
point x ∈ Σ.

A subbundle E ⊂ E is called homogeneous if for each x ∈ Σ, dim E(x) is the
same. Subbundles considered in this paper are all homogeneous. Let (Σ, f, E , A)
be a d-dimensional PLS. A subbundle F of E is A-invariant if A(E(x)) = E(fx)
for every x ∈ Σ. We say two A-invariant subbundles E and F forms a dominated
splitting if there exists l ∈ N such that

‖Al
E(x)‖ ‖A−l

F (f lx)
‖ ≤ 1

2

for every x ∈ Σ. And (following [3]) we denote by E ≺ F , or E ≺l F if we want to
emphasize the role of l. It is easily seen that E ≺ F implies E∩F = 0. We say that
A has an (l, i)-dominated splitting or l-dominated splitting for some 1 ≤ i ≤ d− 1
if there exist two A-invariant subbundles E and F such that dimE = i, E ≺l F

and E(x)⊕ F (x) = E(x) for every x ∈ Σ.
Our main results will be deduced from the following proposition on PLSs.

Proposition 2.2. For any given ε > 0, K ≥ 1 and d ∈ N, there exists an integer
l = l(ε,K, d) ∈ N satisfying the following property:

Let (Σ, f, E , A) be a d-dimensional PLS bounded by K. If there exists 1 ≤ i ≤
d − 1 such that every ε-perturbation of A exhibits an i-eigenvalue gap, then A has
an (l, i)-dominated splitting.

Since Theorem 1.1 is the special case of Theorem 1.2 for Λ being the whole
manifold, we will only show how to deduce Theorem 1.2 from Proposition 2.2.

We need the well-known Franks’ lemma, which is the bridge between Theorem
1.2 and Proposition 2.2.

Lemma 2.3. Let φ ∈ Diff1(M). Then for any neighborhood U of φ there exist ε > 0
and a neighborhood U0 ⊂ U of φ such that given ψ ∈ U0, a finite set {x1, · · · , xN} ⊂
M , a neighborhood U of {x1, · · · , xN} and linear maps Xj : Txj M → Tψxj M such
that ‖Xj − Dψ(xj)‖ ≤ ε for all 1 ≤ j ≤ N , then there exists ψ ∈ U such that
ψx = ψx if x ∈ {x1, · · · , xN} ∪ (M − U) and Dψ(xj) = Xj for all 1 ≤ j ≤ N .

Proof of Theorem 1.2: Given φ ∈ Diff1(M) and a compact invariant set Λ of
φ, if φ has a dominated splitting of index i over P∗(Λ, φ), then it is well-known (see
also Lemma 4.1) that there exist a C1 neighborhood U of φ and a neighborhood U

of Λ such that for any compact invariant set ∆ ⊂ U of ψ ∈ U , ψ has a dominated
splitting of index i over ∆. Then it is easily seen that for any periodic point x with
Orb(x, ψ) ⊂ U , ψ exhibits an i-eigenvalue gap at x.

Now suppose there exist a C1 neighborhood U of φ and a neighborhood U of
Λ such that for any ψ ∈ U and any periodic point x of ψ with Orb(x, ψ) ⊂ U , ψ

exhibits an i-eigenvalue gap at x. Let ε and U0 be guaranteed by Lemma 2.3. Now
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set

Σ = {(x, ψ) : ψ ∈ U0 and x is a periodic point of ψ with Orb(x, ψ) ⊂ U}
f(x, ψ) = (ψ(x), ψ), ∀(x, ψ) ∈ Σ,

E(x, ψ) = TxM, ∀(x, ψ) ∈ Σ,

A(x, ψ) = Dψ(x), ∀(x, ψ) ∈ Σ.

Note that since M is a Riemannian manifold, E is an Euclidean bundle. If necessary,
we may shrink U0 so that

K = sup{‖Dψ(x)‖, ‖Dψ−1(x)‖ : x ∈ M, ψ ∈ U0} < ∞.

Now (Σ, f, E , A) is a PLS. And according to Lemma 2.3, every ε-perturbation of
A exhibits an i-eigenvalue gap. So according to Proposition 2.2, for some integer
l ∈ N, A has an (l, i)-dominated splitting. Now, according to the continuity of
dominated splitting, a well-known limit process (e. g., see [3]) tells us that φ has
an (l, i)-dominated splitting over P∗(Λ, φ). ¤
Remark 2.4. Due to the essence of the uniformity of l, which depends only some
constants ε, K, d, and the point-wise convergence topology of GL(Σ, f, E), in order
to prove Proposition 2.2, it is enough to prove it for SPLSs, i.e., the minimal PLSs.

Now we restate Proposition 2.2 for SPLSs as following.

Proposition 2.5. For any given ε > 0, K ≥ 1 and d ∈ N, there exists an integer
l = l(ε,K, d) ∈ N satisfying the following property:

Let (Σ, f, E , A) be a d-dimensional SPLS bounded by K. If there exists 1 ≤ i ≤
d − 1 such that every ε-perturbation of A exhibits an i-eigenvalue gap, then A has
an (l, i)-dominated splitting.

Because of the importance of uniformity, we will take great care to ensure the
uniformity of constants in our proofs. And we will always state our results in the
form of Proposition 2.5, which looks awkward but is clear enough so that one could
know the uniformity at a glance. For the same reason, we will also reprove some
known results, e. g., Lemma 4.1, Proposition 2.5 for real-diagonalizable case, etc.

So, from now on, we only deal with SPLSs. If we do not make another assump-
tion, we always assume that

Convenient Assumption: Σ = {x = fnx, fx, · · · , fn−1x},

i.e., Σ consists of an n-periodic orbit of f . We should emphasize that the above
assumption is just for convenience and we have no any intention to fix the
period of systems.

Let A ∈ GL(Σ, f, E) be a d-dimensional SPLS. Then λj(y, A) does not depend
on y ∈ Σ and will be denoted by λj(A). If A exhibits an i-eigenvalue gap for some
1 ≤ i ≤ d− 1, then for any y ∈ Σ, the invariant subspace corresponding to the first
i’s eigenvalues of An(y) is well-defined and the invariant subspace corresponding to
the last (d − i)’s eigenvalues is also well-defined. Denote these two subspaces by
Ei(y,A) and F i(y, A) respectively. The corresponding subbundles are denoted by
Ei(A) and F i(A) respectively.
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Now we list some results in [3] about SPLSs. In [3], these results are stated for
PLSs and by Remark 2.4, we restate them for SPLSs.

Lemma 2.6. [3, Lemma 1.2]
1. Given ε > 0 and K ≥ 1 there exists δ = δ(ε,K) > 0 such that for any SPLS

(Σ, f, E , A) bounded by K and every δ-perturbations P and Q of the identity linear
system (Σ, idΣ, E , idE), one has that P ◦A ◦Q is an ε-perturbation of A.

2. Given K ≥ 1, C ≥ 1 and ε > 0 there exist K1 ≥ 1 and ε0 > 0 such
that for any bundle isomorphism P : (E , 〈·, ·〉) → (E , 〈·, ·〉′) covering the identity
idΣ : Σ → Σ with ‖P (x)‖, ‖P (x)−1‖ ≤ C for every x ∈ Σ, where E is vector bundle
over Σ, and any linear system (Σ, f, E , A, 〈·, ·〉) bounded by K, (Σ, f, E , B, 〈·, ·〉′) is a
linear system bounded by K1, where B = P ◦A◦P−1. Moreover, any ε0-perturbation
of B is conjugate by P to some ε-perturbation of A.

Two metrics 〈·, ·〉 and 〈·, ·〉′ on a vector bundle E is called equivalent if there
exists C ≥ 1, for every u ∈ E, we have

1
C
‖u‖ ≤ ‖u‖′ ≤ C‖u‖,

where ‖ · ‖ and ‖ · ‖′ are the norms induced by 〈·, ·〉 and 〈·, ·〉′ respectively. The
second item in Lemma 2.6 will simplify our discussion. Roughly, it says that two
equivalent metrics play the same role in our discussion. Since the constants δ, K1

are uniform (depends only on ε, K, C), when citing this item, we will not introduce
new constants and just say “after a uniformly bounded change of metric on E , we
may assume ...”.

For any SPLS (Σ, f, E , A) and every A-invariant subbundle F , A naturally in-
duces a SPLS, denoted by (Σ, f, F,AF ), or simply AF , which will be called the
restriction of A on F . Denote by E/F (or F⊥) the orthogonal complement of F in
E . A also induces a linear system (Σ, f, E/F, A/F ) on E/F as follows.

For any x ∈ Σ and u ∈ E(x)/F (x), (A/F )(x)u is equal to the orthogonal projec-
tion of A(x)u on E(fx)/F (fx) (of course, along F (fx)).

The linear system (Σ, f, E/F,A/F ) or A/F is called a quotient linear system of
A. With respect to the orthogonal decomposition E = F ⊕ E/F , A has the form:

A =
(

AF ∗
0 A/F

)
.

Lemma 2.7. [3, Lemma 4.1] For any ε > 0 and K ≥ 1, there exists ε1 = ε1(ε,K) ∈
(0, ε] such that for any SPLS (Σ, f, E , A) bounded by K and A-invariant subbundle
F of E, we have

1. Both AF and A/F are SPLSs bounded by K.
2. For every ε1-perturbation C of AF , P ◦A is an ε-perturbation of A, where

P =
(

C ◦A−1
F 0

0 I

)
.

Therefore, (P ◦A)F = C and (P ◦A)/F = A/F .



150 SHAOBO GAN

3. For every ε1-perturbation C of A/F , Q ◦A is an ε-perturbation of A, where

Q =
(

I 0
0 C ◦ (A−1/F )

)
.

Therefore, (Q ◦A)F = AF and (Q ◦A)/F = C.

Let E be another A-invariant subbundle with E ∩ F = 0. Denote by P the
orthogonal projection on E/F . Denote by E/F the subbundle P (E), which has the
same dimension as E. Since both E and F are A-invariant, (A/F )(E/F ) = E/F .
Write

AE/F = (A/F )E/F : E/F → E/F.

So, (Σ, f, E , f) induces a quotient system (Σ, f, E/F,AE/F ).
With respect to the orthogonal decomposition

E = F ⊕ E/F ⊕ E/(E ⊕ F ),

A can be written as

A =




AF ∗ ∗
0 AE/F ∗
0 0 A/(E ⊕ F )


 .

An easy consequence of Lemma 2.7 is:

Corollary 2.8. For any ε > 0 and K ≥ 1, there exists ε2 = ε2(ε, K) ∈ (0, ε] such
that for any SPLS (Σ, f, E , A) bounded by K and A-invariant subbundles E and F

of E with E ∩ F = 0, we have
1. AE/F is bounded by K.
2. For every ε2-perturbation C of AE/F , P ◦A is an ε-perturbation of A, where

P =




I 0 0
0 C ◦ (A−1

E/F ) 0
0 0 I


 .

Therefore, (P ◦A)F = AF , (P ◦A)/(E ⊕ F ) = A/(E ⊕ F ) and (P ◦A)E/F = C.

3. Reduction of the dimension and the proof of Proposition 2.2

A d-dimensional SPLS A ∈ GL(Σ, f, E) is called complex-diagonalizable if ev-
ery eigenvalue of A is simple and |λj(A)| = |λj+1(A)| implies λj(A) and λj+1(A)
are complex conjugates and called real-diagonalizable if for any 1 ≤ j ≤ d − 1,
|λj(A)| < |λj+1(A)|. Denote by GLc(Σ, f, E) and GLr(Σ, f, E) the sets of complex-
diagonalizable and real-diagonalizable SPLSs respectively. GLc(Σ, f, E) is dense in
GL(Σ, f, E) but GLr(Σ, f, E) is not.

Let A ∈ GLc(Σ, f, E) and the eigenspaces decomposition of An(x) be

(3.1) E(x) = E1(x)⊕ E2(x)⊕ · · · ⊕ Es(x),

with dim Ej(x) = 1 or 2 and if dim Ej(x) = 1, the eigenvalue of An
Ej(x) is a real

number µj and if dim Ej(x) = 2, the eigenvalues of An
Ej

are complex conjugates
{µj , µ̄j}. Moreover, we assume that |µ1| < |µ2| < · · · < |µs|. If necessary we will
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write µj = µj(A). Under these assumptions, the decomposition (3.1) is called the
standard eigenspaces decomposition of An(x). Let

(3.2) E = E1 ⊕ E2 ⊕ · · · ⊕ Es

be the bundle decomposition induced by the decomposition (3.1) at x. We will call
(3.2) the standard eigenspaces decomposition of A and call the s-tuple
(dimE1, dim E2, · · · , dim Es) the type of A, denoted by t(A). Let t(A) = (t1, t2, · · · , t2).
If A exhibits an i-eigenvalue gap, then there exists 1 ≤ a = a(A) ≤ s− 1 such that

i =
a∑

j=1

tj .

For any 1 ≤ j ≤ a ≤ k < s, denote by

Ejk(x) = (Ej(x)⊕ Ek+1(x))/(Ej+1(x)⊕ · · · ⊕ Ek(x)),

= Ej(x)/(Ej+1(x)⊕ · · · ⊕ Ek(x))⊕ Ek+1(x)/(Ej+1(x)⊕ · · · ⊕ Ek(x))

Ajk(x) = AEjk
(x).

If j = k,

Ej(x)/(Ej+1(x)⊕· · ·⊕Ek(x)) = Ej(x), Ek+1(x)/(Ej+1(x)⊕· · ·⊕Ek(x)) = Ek+1(x).

Let Ejk be the subbundle of E with fibre Ejk(x). When necessary, we will write

Ej(x) = Ej(x,A), Ej = Ej(A), Ejk(x) = Ejk(x,A), Ejk = Ejk(A).

The following fact is obvious.

Lemma 3.1. Let A ∈ GL(Σ, f, E), Bk ∈ GL(Σ, f, E) be d-dimensional SPLSs such
that ‖Bk−A‖ → 0 as k →∞. Assume that for some 1 ≤ i ≤ d−1 and l ∈ N, every
Bk has an (l, i)-dominated splitting. Then A has an (l, i)-dominated splitting.

According to Lemma 3.1 and the denseness of GLc(Σ, f, E) in GL(Σ, f, E), we
only have to prove Proposition 2.5 for A ∈ GLc(Σ, f, E).

The following lemma is a combination of Lemma 5.2 and 5.3 in [3], which will
help us to reduce the proof of Proposition 2.5 for general dimensional case to lower
dimensional (d ≤ 4) case.

Lemma 3.2. For any given K ≥ 1 and l, d ∈ N, there exists L = L(K, l, d) ∈ N
satisfying the following property:

Let (Σ, f, E , A) be a d-dimensional SPLS bounded by K. And assume that there
is an A-invariant direct sum decomposition:

E = E1 ⊕ E2 ⊕ · · · ⊕ Es

If there exists 1 ≤ a ≤ s− 1 satisfying that for every 1 ≤ j ≤ a ≤ k ≤ s− 1,

Ej/(Ej+1 ⊕ · · · ⊕ Ek) ≺l Ek+1/(Ej+1 ⊕ · · · ⊕ Ek),

then
(E1 ⊕ · · · ⊕ Ea) ≺L (Ea+1 ⊕ · · · ⊕ Es).
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Proof We only remark that the proofs given in [3] do work for dim Ej not neces-
sarily equal to 1. ¤

In our proof of Proposition 2.5, we will use Lemma 3.2 for dim Ej = 1 or 2.
We also need the following lemma in the reduction procedure.

Lemma 3.3. Given ε > 0 and K ≥ 1, there exists ε3 = ε3(ε, K) ∈ (0, ε] satisfying
the following property:

Given d ∈ N, 1 ≤ i ≤ d − 1, let (Σ, f, E , A) be a d-dimensional complex-
diagonalizable SPLS bounded by K such that every ε-perturbation of A exhibits
an i-eigenvalue gap. Let t(A) = (t1, t2, · · · , ts). Then for every 1 ≤ j ≤ a ≤
k ≤ s− 1 (a = a(A)), every ε3-perturbation of the SPLS (Σ, f, Ejk, Ajk) exhibits a
tj-eigenvalue gap .

Proof We use the arguments in [3, Lemma 5.1] to prove the lemma.
Let ε3 = ε2(ε,K) be determined by Corollary 2.8. We will show that ε3 satisfies

the lemma.
Let (Σ, f, E , A) be a d-dimensional complex-diagonalizable SPLS bounded by

K such that every ε-perturbation of A exhibits an i-eigenvalue gap. Let t(A) =
(t1, t2, · · · , ts) and the standard eigenspaces decomposition of A be (3.2). Write
u = tj = dim Ej and v = tk+1 = dim Ek+1.

If the conclusion is not satisfied by the above A, let C be an ε3-perturbation
of Ajk such that |λu(C)| = |λu+1(C)| , p. In the following, we will show that
some ε-perturbation of A exhibits no i-eigenvalue gap and this contradiction then
finishes the proof.

According to Corollary 2.8, there exists an ε-perturbation B of A such that the
eigenvalues of B are

λl(A), l ∈ Q,

λm(C), m = 1, · · · , u + v,

where

Q = {1, · · · , σj−1, σj + 1, · · · , σk, σk+1 + 1, · · · , d} ⊂ N,

σb =
b∑

c=1

tc.

Let Bτ = A + τ(B − A), τ ∈ [0, 1]. So B0 = A and B1 = B. Every Bτ is an
ε-perturbation of A (see Remark 2.1). If denote by

Cτ = (Bτ )Ejk(A),

then Cτ is continuous in τ and C0 = Ajk, C1 = C. Moreover, the eigenvalues of
Bτ are

λl(A), l ∈ Q,

λm(Cτ ), m = 1, · · · , u + v.

We may assume that for τ ∈ [0, 1), |λu(Cτ )| < |λu+1(Cτ )|. Since Cτ is continuous
in τ and eigenvalues of matrix are continuous in matrices, |λu(Cτ )|, |λu+1(Cτ )| are
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continuous in τ . We have three cases: 1) |λi(A)| ≤ p ≤ |λi+1(A)|, 2) p < |λi(A)|
and 3) p > |λi+1(A)|.

In the first case, we have p = |λi(B)| = |λi+1(B)| and hence B has no i-eigenvalue
gap. In the second case, if j = a and p > |λσa−1 |, then again we have p =
|λi(B)| = |λi+1(B)|. If j = a and p ≤ |λσa−1 |, then according to the continuity of
|λu+1(Cτ )| with τ , there exists τ ∈ [0, 1] such that |λu+1(Cτ )| = |λσa−1 |. Hence
|λi(Bτ )| = |λi+1(Bτ )| and then Bτ has no i-eigenvalue gap. If j < a, then i ∈ Q

and according to the continuity of |λu+1(Cτ )| with τ , there exists τ ∈ [0, 1) such
that |λu+1(Cτ )| = |λi(A)|. Since in this situation, λi(A) is also an eigenvalue of
Bτ , Bτ has no i-eigenvalue gap. The argument for the third case is similar to the
second. This proves this lemma. ¤

Now we give the proof of Proposition 2.5, after assuming that it has been proven
for the special cases: d = 2, 3 and d = 4, i = 2, while the proof of the special cases
is left to §6.

Proof of Proposition 2.5 after assuming it for d ≤ 4:
Since complex-diagonalizable matrices are dense in the set of matrices, according

to Lemma 3.1, we only have to give a proof for complex-diagonalizable SPLSs.
Let ε′ = ε3(ε,K) be determined by Lemma 3.3, l = l(ε′,K, d) determined by

Proposition 2.5 for d = 2, 3 and d = 4, i = 2 and L = L(K, l, d) determined by
Lemma 3.2. We will show that this L satisfies Proposition 2.5.

Let A ∈ GLc(Σ, f, E) be a d-dimensional SPLS bounded by K such that every ε-
perturbation of A exhibits an i-eigenvalue gap. Denote by t(A) = (t1, t2, · · · , ts), a =
a(A). Let

E = E1 ⊕ E2 ⊕ · · · ⊕ Es

be the standard eigenspaces decomposition of A.
According to Lemma 3.2, we only have to prove that for every 1 ≤ j ≤ a ≤ k ≤

s− 1, one has

(3.3) Ej/(Ej+1 ⊕ · · · ⊕ Ek) ≺l Ek+1/(Ej+1 ⊕ · · · ⊕ Ek).

By Lemma 3.3, every ε′-perturbation of the SPLS (Σ, f, Ejk, Ajk) exhibits a tj-
eigenvalue gap. Since tj , tk+1 = 1 or 2, (3.3) is satisfied by the choice of l. This
finishes the proof of Proposition 2.5. ¤

4. Some general lemmas

In this section, we list three general lemmas, which will be used in the proof of
Proposition 2.5 for d ≤ 4.

The first is about the continuation of dominated splittings for SPLSs. Since it
is more or less well-known (e.g., see [13, 17]), we give the sketch of a proof here for
emphasizing the uniformity of constants.

Let E be an Euclidean bundle over Σ and y ∈ Σ. Given any two subspaces
X, Y ⊂ E(y) with X ∩ Y = 0, let L : X/Y → X be a linear map such that Y is
the graph of L, i.e., Y = {u + Lu : u ∈ X/Y }. Then the angle between X and Y is
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defined as ‖L‖−1 and denoted by α(X,Y ). Let E, F be two subbundles of E with
E ∩ F = 0, then define α(E,F ) = min{α(E(y), F (y)) : y ∈ Σ}.
Lemma 4.1. For any given K ≥ 1 and l ∈ N, there exists ε4 = ε4(K, l) > 0, L =
L(K, l) ∈ N satisfying the following property:

For any d ∈ N, let (Σ, f, E , A) be a d-dimensional SPLS bounded by K and
assume that A has an (l, i)-dominated splitting E ⊕ F for some 1 ≤ i ≤ d − 1.
Then every ε4-perturbation B of A has an (L, i)-dominated splitting E(B)⊕F (B).
Especially,

α(E(B), F (B)) ≥ 1
2(K + ε4)2L + 1

.

Proof Denote by

α = 1/(2K2l + 1).

We show that if (Σ, f, E , A) is a SPLS bounded by K, with an l-dominated splitting
E ≺l F , then α(E, F ) ≥ α, which is also a well-known result (e. g., see [3]).

Let F (y) be the graph of linear map L : E(y)/E(y) → E(y). Then by definition,

α(E(y), F (y)) = ‖L‖−1.

Given any 0 6= w ∈ E(y)/E(y), write v = w + Lw ∈ F (y). By the definition of
l-dominated splitting, we have

‖Alw‖
‖Alv‖ =

‖Alv −AlLw‖
‖Alv‖ ≥ ‖Alv‖ − ‖AlLw‖

‖Alv‖

≥ 1− ‖AlLw‖
‖Alv‖ ≥ 1− 1

2
· ‖Lw‖
‖v‖ ≥ 1

2
.

On the other hand,
‖Alw‖
‖Alv‖ ≤ K2l ‖w‖

‖v‖ .

So we have
‖v‖
‖w‖ ≤ 2K2l.

So
‖Lw‖
‖w‖ =

‖v − w‖
‖w‖ ≤ ‖v‖+ ‖w‖

‖w‖ ≤ 2K2l + 1.

Hence ‖L‖ ≤ α−1 and then α(E(y), F (y)) ≥ α.

Now, according to item 2 of Lemma 2.6, after a uniformly bounded change of
metric, we may assume that the two subbundles E and F are orthogonal every-
where.

Since the method of the proof is more or less well-known, we just give here the
sketch of the proof.

For any a ∈ (0, 1) and y ∈ Σ, denote by

CE
a (y) = {v = vE + vF : vE ∈ E(y), vF ∈ F (y), ‖vF ‖ ≤ a‖vE‖},

CF
a (y) = {v = vE + vF : vE ∈ E(y), vF ∈ F (y), ‖vE‖ ≤ a‖vF ‖}
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the a-cone around E(y) and F (y) respectively. And denote by CE
a , CF

a the cone
fields. Then there exists δ = δ(K, l) ∈ (0, 1) such that for any y ∈ Σ,

A−l(CE
δ (y)) ⊂ CE

2δ/3(f
−ly), Al(CF

δ (y)) ⊂ CF
2δ/3(f

ly)

and for any u ∈ CE
δ (y), v ∈ CF

δ (y) with ‖u‖ = ‖v‖ = 1,

‖Alu‖
‖Alv‖ ≤

2
3
.

Then there exists ε4 = ε4(δ,K, l) = ε4(K, l) such that for any ε4-perturbation B

of A, one has

B−l(CE
δ (y)) ⊂ CE

3δ/4(f
−ly), Bl(CF

δ (y)) ⊂ CF
3δ/4(f

ly)

and for any u ∈ CE
δ (y), v ∈ CF

δ (y) with ‖u‖ = ‖v‖ = 1,

‖Blu‖
‖Blv‖ ≤

3
4
.

Now take L = 3l. Then one can find two B-invariant subbundles E(B) ⊂ CE
δ and

F (B) ⊂ CF
δ such that E = E(B) ⊕ F (B) is an L-dominated splitting of B. This

finishes the sketch of the proof. ¤
The second lemma says that if a SPLS robustly exhibits an eigenvalue gap, then

there exists a uniform gap for its small perturbations.

Lemma 4.2. For any given ε > 0 and K ≥ 1, there exist ε5 = ε5(ε,K) ∈ (0, ε]
and γ = γ(ε, K) > 1 satisfying the following property:

For any d ∈ N, let A ∈ GL(Σ, f, E) be a d-dimensional SPLS bounded by K.
And assume that there exists 1 ≤ i ≤ d − 1 such that every ε-perturbation of A

exhibits an i-eigenvalue gap. Then for every ε5-perturbation B of A,

|λi+1(B)|
|λi(B)| ≥ γn.

Proof Let ε5 = ε1(ε/2,K + ε) ≤ ε/2 be determined by Lemma 2.7. If the
uniform constant γ > 1 does not exist, then for some ε > 0, K ≥ 1 and any
k ∈ N, there exists a dk-dimensional SPLS (Σk, fk, Ek, Ak) bounded by K and
integer 1 ≤ ik ≤ dk − 1 such that every ε-perturbation of Ak exhibits an ik-
eigenvalue gap but for some ε5-perturbation Bk of Ak,

|λik+1(Bk)|
|λik

(Bk)| ≤
(

1 +
1
k

)nk

,

where nk is the period of Bk.
Denote by BkE the restriction of Bk to the subbundle Eik(Bk). Let

Ck =
( |λik+1(Bk)|
|λik

(Bk)|
) 1

nk

BkE .

Then for k large enough, Ck is an ε5-perturbation of BkE . Then according to
Lemma 2.7, there is an ε/2-perturbation Dk of Bk such that the eigenvalues of
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Dnk

k (x) are,

|λik+1(Bk)|
|λik

(Bk)| λ1(Bk),
|λik+1(Bk)|
|λik

(Bk)| λ2(Bk), · · · ,

|λik+1(Bk)|
|λik

(Bk)| λik
(Bk), λik+1(Bk), · · · , λdk

(Bk).

So Dk has no ik-eigenvalue gap. But

‖Dk −Ak‖ ≤ ‖Dk −Bk‖+ ‖Bk −Ak‖ ≤ ε.

So Dk is an ε-perturbation of Ak, which is a contradiction. ¤
To prove the third result, we need a result in Linear Algebra considering uni-

formity of the convergence in the Spectral Radius Theorem for finite-dimensional
matrices. Since we could not find a proof in standard books on Linear Algebra, we
give a proof here.

Lemma 4.3. Given d ∈ N, for any d× d matrix A, the convergence

lim
n→∞

‖An‖ 1
n = ρ(A)

is locally uniform, where ρ(A) is the largest eigenvalue |λd(A)| of A in absolute
value, i.e., the spectral radius of A. More precisely, there exists δ = δ(A) > 0
satisfying the following property:

For any given ε > 0, there exists an integer N ∈ N such that for any integer
n ≥ N and matrix B with ‖B −A‖ ≤ δ, one has

‖Bn‖ ≤ (ρ(B) + ε)n.

Proof We will only prove the lemma for the case ρ(A) > 0. The case ρ(A) = 0
can be proved similarly.

For any given matrix A, according to the Spectral Radius Theorem, one has

lim
n→∞

‖An‖ 1
n = ρ(A).

Hence for any ε > 0, there exists an integer N = N(ε) ∈ N such that for any integer
n ≥ N , one has

‖An‖ ≤ (ρ(A) + ε/4)n.

A simple calculation shows that

‖Bn −An‖ ≤ ‖B −A‖
n−1∑

j=0

‖A‖j‖B‖n−1−j .

If ‖B − A‖ ≤ 1 (we always assume this condition in the following and that the
variables ε, δ ≤ 1) and denote by K = ‖A‖+ 2, then

‖Bn −An‖ ≤ nKn−1‖B −A‖.
It is well-known that ρ(A) depends continuously on A (e.g., see [14, Proposition

2.18]). So there exists δ > 0 such that for any ‖B −A‖ ≤ δ,

ρ(A)− ε/4 ≤ ρ(B) ≤ ρ(A) + ε/4.
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Moreover we may assume δ = δ(A, ε,N) = δ(A, ε) is small enough so that

‖BN −AN‖ ≤ ρ(A)(ε/4)N−1.

So

‖BN‖ ≤ ‖AN‖+ ρ(A)(ε/4)N−1 ≤ (ρ(A) + 2ε/4)N ≤ (ρ(B) + 3ε/4)N .

For any n ≥ N , write n = kN + s, 0 ≤ s ≤ N − 1. Therefore

‖Bn‖ = ‖BkN+s‖ ≤ ‖BkN‖‖Bs‖ ≤ KN‖BN‖k

≤ KN (ρ(B) + 3ε/4)kN ≤ K2N (ρ(B) + 3ε/4)n.

Take N1 ≥ N large enough so that for any n ≥ N1, we have

K
2N
n ≤ ρ(B) + ε

ρ(B) + 3ε/4

for any ‖B − A‖ ≤ δ. We get that for any ε > 0, there exist δ > 0, N1 ∈ N such
that for any n ≥ N1 and ‖B −A‖ ≤ δ, we have

‖Bn‖ ≤ (ρ(B) + ε)n.

Now let us prove the lemma. Suppose on the contrary, there exists a matrix A,
for any δ > 0, there exists ε > 0, for any integer k ∈ N, there exist nk ≥ k and a
matrix Bk with ‖Bk −A‖ ≤ δ,

‖Bnk

k ‖ > (ρ(Bk) + ε)nk .

Since ‖Bk − A‖ ≤ δ, {‖Bk‖}∞k=1 is bounded. By taking subsequence, we may
assume that Bk → C as k →∞. Since nk ≥ k →∞, applying the result of the last
paragraph to the matrix C, we get a contradiction. This finishes the proof of the
lemma. ¤

An immediate consequence of Lemma 4.3 is that for every integer d ∈ N, the
convergence in the Spectral Radius Theorem is uniform on any bounded subset of
the set of d× d matrices. A weak version of this lemma is used in [20].

Lemma 4.4. For any given ε > 0, K ≥ 1, α > 0, C ≥ 1, γ > 0 and d ∈ N, there
exists an integer l = l(ε, K, α, C, γ, d) ∈ N satisfying the following property:

Let (Σ, f, E , A) be a d-dimensional SPLS bounded by K. And assume that
C0. there exists 1 ≤ i ≤ d − 1 such that every ε-perturbation of A exhibits an

i-eigenvalue gap. Moreover, suppose
C1. the angle α(Ei(y,B), F i(y, B)) ≥ α for every y ∈ Σ and every ε-perturbation

B of A, and
C2. for every y ∈ Σ,

(4.4) ‖An
Ei(y,A)‖ ‖A−n/Ei(fny, A)‖ ≤ Cγ−n.

(where n is the period of (Σ, f, E , A))
Then A has an (l, i)-dominated splitting.
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Proof The proof given here is more or less a standard process to show the exis-
tence of dominated splitting (e.g., see [12, 20]).

First, let us define some constants. Let δ = δ(ε,K + ε) be determined by item 1
of Lemma 2.6. Take ε′ > 0 such that 2ε′ + ε′2 < δ and ε′ < γ − 1. And then take
integer m ∈ N such that

ε′(1 + ε′)m ≥ 1 +
2
α

, C

(
1 + ε′

γ

)m

< 1.

For any d-dimensional SPLS (Σ, f, E , A) bounded by K and satisfying C0, C1
and C2, we will show first that if n > m, then A has an (m, i)-dominated splitting.

According to item 2 of Lemma 2.6, after a uniformly bounded change of metric
on E , we may assume that Ei(y, A) is orthogonal to F i(y,A) for every y ∈ Σ. And
now, A/Ei(y, A) = AF i(y,A).

We make some explanations for this citing of item 2 of Lemma 2.6. Under the
new metric, the constants C and γ in (4.4) are not modified since we do not change
the metric on Ei(A) and F i(A), but the constants ε, K will be changed according
to Lemma 2.6 and by the definition of angle between two subspaces, one can also
verify that the new α depends only on ε, K and the old α, which determines the
bound of two metrics, i.e., the bound of ‖P‖ in Lemma 2.6.

Let us continue the proof. Suppose on the contrary that for (some given ε > 0,
K ≥ 1, α > 0, C ≥ 1, γ > 0 and d ∈ N and) some d-dimensional SPLS A bounded
by K and satisfying C0, C1 and C2 and for some y ∈ Σ with period n > m, one
has

(4.5) ‖Am
Ei(y)‖ ‖A−m

F i(fmy)‖ >
1
2
.

We will construct a perturbation B of A such that B(f jy) = Pj ◦ A(f jy) ◦ Qj

for j = 0, 1, · · · , n− 1, where

‖Qj − I‖, ‖Q−1
j − I‖, ‖Pj − I‖, ‖P−1

j − I‖ ≤ δ

and

α(Ei(fmy,B), F i(fmy, B)) < α.

Then according to Lemma 2.6, B is an ε-perturbation of A. So the above inequality
contradicts the condition C1 in the lemma.

By (4.5), we can take two unit vectors w ∈ Ei(y, A), v ∈ F i(y, A) such that

‖Am(y)(w)‖
‖Am(y)(v)‖ >

1
2
.

Take a linear map L : F i(y,A) → Ei(y, A) such that Lv = ε′w and ‖L‖ = ε′. And
define L : F i(y, A) → Ei(y, A) by

(4.6) L = (1 + ε′)nAn
Ei(y,A) ◦ L ◦A−n

F i(y,A).

Then according to the choice of ε′,

‖L‖ ≤ (1 + ε′)n‖L‖Cγ−n < ‖L‖ ≤ ε′.
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Define P, S : E(y) → E(y) by

P =
(

I L

0 I

)
, S =

(
I L

0 I

)
,

where the matrix is respect to the decomposition

E(y) = Ei(y,A)⊕ F i(y,A).

According to our choice of metric, this is an orthogonal decomposition. In the
following, all matrices are respect to this kind of decomposition.

Now define Tj : E(f jy) → E(f jy), j = 0, 1, · · · , n− 1, by

Tj =
(

(1 + ε′)I 0
0 I

)
.

Now define the perturbation B of A by

B(y) = T1 ◦A(y) ◦ P,

B(f jy) = Tj+1 ◦A(f jy), j = 1, 2, · · · , n− 2,

B(fn−1y) = S−1 ◦ T0 ◦A(fn−1y).

According to the choice of ε′, one can easily verify that B is an ε-perturbation
of A.

Now let us calculate Ei(y, B), F i(y,B) and α(Ei(fmy, B), F i(fmy, B)).
Denote by

T j =
(

(1 + ε′)jI 0
0 I

)
.

Then

Bn(y) = S−1 ◦ Tn ◦An(y) ◦ P

=
(

I −L

0 I

)(
(1 + ε′)nI 0

0 I

) (
An

Ei(y,A) 0
0 An

F i(y,A)

) (
I L

0 I

)

=

(
(1 + ε′)nAn

Ei(y,A) 0
0 An

F i(y,A)

)
.

The reason for the last equality is the definition (4.6) of L. So

Ei(y, B) = Ei(y, A), F i(y, B) = F i(y,A).

But

Bm(y) = Tm ◦Am(y) ◦ P

=
(

(1 + ε′)mI 0
0 I

) (
Am

Ei(y,A) 0
0 Am

F i(y,A)

) (
I L

0 I

)

=

(
(1 + ε′)mAm

Ei(y,A) (1 + ε′)mAm
Ei(y,A) ◦ L

0 Am
F i(y,A)

)
.

Define Lm : F i(fmy, A) → Ei(fmy,A) by

Lm = (1 + ε′)mAm
Ei(y,A) ◦ L ◦A−m

F i(fmy,A).
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Then F i(fmy, B) is the graph of Lm and Ei(fmy, B) = Ei(fmy,A). Hence

α(Ei(fmy, B), F i(fmy, B)) = ‖Lm‖−1.

Since

‖Lm‖ ≥ ‖Lm(Amv)‖
‖Amv‖ = ε′(1 + ε′)m/2 >

1
α

,

we have α(Ei(fmy, B), F i(fmy, B)) < α, a desired contradiction.
Finally, let γ1 = 3

√
γ(ε,K) be determined by Lemma 4.2. And by Lemma 4.3,

take l = km and k = jm! large enough so that γk
1 ≥ 2 and

‖C‖k ≤ (γ1ρ(C))k

for every matrix C with ‖C‖ ≤ Km. One can easily verify that

(4.7) ‖Al
Ei(y)‖ ‖A−l

F i(f ly)
‖ ≤ 1

2
for every d-dimensional SPLS (Σ, f, E , A) with period ≤ m and every y ∈ Σ. Then
l satisfies the demand of the lemma. This finishes the proof of the lemma. ¤

5. Some perturbation lemmas for lower order (d ≤ 4) matrices

In this section, we will present four auxiliary lemmas, which deal with the per-
turbations of 2×2, 3×3 and 4×4 matrices. Three of them, Lemma 5.1, 5.3 and 5.5,
involve angles between two eigenspaces. Lemma 5.1, considers 2× 2 matrices with
two real eigenvalues, which is contained in [5]. Lemma 5.3, is new, which considers
3× 3 matrices with a pair of conjugate complex eigenvalues and a real eigenvalue.
And Lemma 5.5 is, in some sense, a special case of Lemma II.9 in [12]. In fact, our
proof follows the method in [12]. Lemma 5.2 gives a condition for 2 × 2 matrices
with complex eigenvalues to be perturbed to one with real eigenvalues.

Lemma 5.1. [5, Fact 4.13] For every δ > 0, γ > 1, there exists α = α(δ, γ) > 0
such that for every 2× 2 matrix Q with the form

Q =
(

1 ∗
0 µ

)
,

such that |µ| > γ and the angle between the eigenspace E of 1 and the eigenspace
F of µ is ≤ α, then there is a matrix

P =
(

1 0
a 1

)

with ‖P − I‖ ≤ δ such that the modulus of the two eigenvalues of P ◦Q are equal
to |µ| 12 .

We give the motivation for the following three lemmas. ¿From Linear Algebra,
we know that for every linear isomorphism A : R2 → R2 with a pair of conjugate
complex eigenvalues {eiθ, e−iθ}, under a proper orthonormal basis and for some
C ≥ 1, A has the form

(5.8) Rθ, C = P−1
C ◦Rθ ◦ PC =

(
cos θ −C sin θ

C−1 sin θ cos θ

)
,
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where

PC =
(

1 0
0 C

)
, Rθ =

(
cos θ − sin θ

sin θ cos θ

)
.

Hence, after a change of metric, bounded by C, A has the form Rθ under a proper
orthonormal basis of the new metric.

Lemma 5.2 controls the bound of C. Once C is uniformly bounded and we
assume C = 1 after a uniformly bounded change of metric. So we only have to
deal with Rθ, which is the object of Lemma 5.3 and 5.5 for dim = 3 and dim = 4
respectively.

Lemma 5.2. For any δ > 0, there exists η = η(δ) > 0 such that if |C−1 sin θ| ≤ η

then exists a 2×2 matrix P with ‖P−I‖ ≤ δ so that P ◦Rθ, C is real-diagonalizable.

Proof If | tan θ| < 1, then take η = δ and

P =
(

1 0
−C−1 tan θ 1

)
.

Otherwise, take η = δ/8 and

P =
(

1 0
4C−1/ sin θ 1

)
.

¤

Lemma 5.3. For every δ > 0, η > 0 and γ > 1, there exists α = α(δ, η, γ) > 0
such that for every matrix Q with the form

Q =




cos θ − sin θ p

sin θ cos θ q

0 0 µ


 ,

such that |µ| > γ, | sin θ| ≥ η and the angle between the eigenspace E of {eiθ, e−iθ}
and the eigenspace F of µ is ≤ α, then there is a matrix P with the form

P =




1 0 0
0 1 0
a b 1




such that ‖P − I‖ ≤ δ and the modulus of the three eigenvalues of P ◦ Q are all
equal to |µ| 13 .

Proof Let (x, y, 1)T be an eigenvector of Q corresponding to the eigenvalue µ.
By the definition of angle between two subspaces, α(E,F ) = 1√

x2+y2
. An easy

calculation shows that
(

x

y

)
= (µ−Rθ)−1

(
p

q

)
.

And it is easy to see that

p2 + q2 ≥ (|µ| − 1)2(x2 + y2) = (|µ| − 1)2α(E, F )−2.
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Let det(λ−P ◦Q) = λ3 + a2λ
2 + a1λ− µ. If we can take two numbers a, b such

that a2 = a1 = 0, then the modulus of the three eigenvalues of P ◦Q are all equal
to |µ| 13 . Solving the equations a2 = a1 = 0, we get

a =
q cos 2θ − p sin 2θ − pµ sin θ

(p2 + q2) sin θ
,

b =
−p cos 2θ − q sin 2θ − qµ sin θ

(p2 + q2) sin θ
.

An easy computation shows that

a2 + b2 ≤ 4(|µ|+ 1)2

(p2 + q2)η2
≤ 4

η2

(|µ|+ 1)2

(|µ| − 1)2
α(E, F )2 ≤ 4

η2

(γ + 1)2

(γ − 1)2
α(E,F )2.

¿From the above formula, one can take α = α(δ, η, γ) easily. ¤

Remark 5.4. Note that the perturbation PQ of Q in Lemma 5.1 and 5.3 has no
eigenvalue gap of any type.

Lemma 5.5. For every δ > 0 and γ > 1, there exists α = α(δ, γ) > 0 such that for
every matrix Q with the form

Q =
(

Rθ D

0 µRφ

)
,

where D is a 2× 2 matrix, such that µ > γ and the angle between the eigenspace E

of {eiθ, e−iθ} and the eigenspace F of {µeiφ, µe−iφ} is ≤ α, then there is a matrix

(5.9) P =
(

I 0
C I

)

with ‖P − I‖ ≤ δ (where C is a 2 × 2 matrix) such that the matrix P ◦ Q has a
real eigenvalue equal to

√
µ. Especially, P ◦ Q has at most one pair of conjugate

complex eigenvalues.

Proof (Following [12, Lemma II.9]) Let L : E⊥ → E be a linear map such that
the graph of L is equal to F , i.e., F = {y + Ly : y ∈ E⊥}. Since Q(F ) = F , we
have that for any y ∈ E⊥, there exists y′ ∈ E⊥ such that

(
Rθ D

0 µRφ

)(
Ly

y

)
=

(
Ly′

y′

)
.

So
RθL + D = µLRφ.

Hence
L = µ−1RθLR−φ + µ−1DR−φ.

We get
‖L‖ ≤ µ−1‖L‖+ µ−1‖D‖.

Hence

‖L‖ ≤ 1
µ− 1

‖D‖.
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Since α(E,F ) = ‖L‖−1, we have

‖D‖ ≥ µ− 1
α(E,F )

.

Denote β =
√

µ > 1. We will find a 2 × 2 matrix C with ‖C‖ ≤ δ and v =
(x, y)T 6= 0 such that P ◦Q(v) = βv, where P has the form (5.9). Since

P ◦Q =
(

I 0
C I

)(
Rθ D

0 µRφ

)
=

(
Rθ D

CRθ CD + µRφ

)
,

We get the equations
{

Rθx + Dy = βx

CRθx + (CD + µRφ)y = βy.

¿From the first equality of the above formula, we get

x = (β −Rθ)−1Dy.

Substituting into the second equality, we get

CRθ(β −Rθ)−1Dy + CDy = (β − µRφ)y.

And then
C(β −Rθ)−1Dy = (1− µ

β
Rφ)y.

Take a unit vector y such that ‖Dy‖ = ‖D‖. Denote

u = (β −Rθ)−1Dy, v = (1− µ

β
Rφ)y.

Then ‖u‖ ≥ µ− 1
α(E,F )(β + 1) and ‖v‖ ≤ 1 + µ

β
= µ + β

β
. Take C such that Cu = v

and ‖C‖ = ‖v‖
‖u‖ .

Then

‖C‖ ≤ (µ + β)(β + 1)
β(µ− 1)

α(E, F ) =
√

µ + 1√
µ− 1

α(E, F ) <

√
γ + 1√
γ − 1

α(E, F ).

¿From the above inequality, it is easy to take α = α(δ, γ) to satisfy this lemma.
¤

6. Proof of Proposition 2.5 for d ≤ 4

In this section we will use the estimates in the last section to prove Proposition
2.5 for the special cases: d = 2, 3 and d = 4, i = 2.

Proof of Proposition 2.5 for d = 2:
Assume that δ = δ(ε/2,K + ε) is determined by item 1 of Lemma 2.6, γ =

γ(ε,K) > 0 determined by Lemma 4.2, α = α(δ, γ) > 0 determined by Lemma 5.1
and l = l(ε/2,K, α, C = 1, γ, d = 2) ∈ N determined by Lemma 4.4. Then we will
show that l satisfies Proposition 2.5 for d = 2.

Let (Σ, f, E , A) be any 2-dimensional SPLS bounded by K such that every ε-
perturbation of A exhibits an 1-eigenvalue gap.
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For any ε/2-perturbation B of A, let the standard eigenspaces decomposition of
B be

E = E(B)⊕ F (B).

According to Lemma 4.2, γn|λ1(B)| ≤ |λ2(B)| and under the orthogonal decom-
position

E(x) = E(x,B)⊕ E(x)/E(x, B),

Bn(x) has the form

λ1(B)




1 ∗

0 λ2(B)
λ1(B)


 .

Since any ε/2-perturbation of B also exhibits a 1-eigenvalue gap, according to
Lemma 5.1,

α(E(B), F (B)) ≥ α.

Then by Lemma 4.4 (for C = 1), E(A)⊕F (A) is an l-dominated splitting. This
finishes the proof for this case. ¤

Proof of Proposition 2.5 for d = 3: We only give a proof for i = 2. The case i =
1 can be proved similarly. We will determine the uniform constant l = l(ε,K, d = 3)
in three steps.

First, let ε′ = ε5(ε,K), γ = γ(ε,K) be determined by Lemma 4.2.
Step 1: Let ε′1 = ε3(ε,K) be determined by Lemma 3.3 and l0 = l(ε′1,K) be

determined by Proposition 2.5 for d = 2. And then let L0 = L(K, l0, d = 3)
be determined by Lemma 3.2. We claim that if (Σ, f, E , A) is any 3-dimensional
complex diagonalizable SPLS bounded by K with t(A) = (1, 1, 1) such that every ε-
perturbation of A exhibits a 2-eigenvalue gap, then A admits an (L0, 2)-dominated
splitting

Let the standard eigenvalues decomposition of A be

E = E1 ⊕ E2 ⊕ E3.

According to Lemma 3.3, every ε′1-perturbation of A23 and A13 exhibits a 1-
eigenvalue gap and hence E2 ≺l0 E3, E1/E2 ≺l0 E3/E2. Then by Lemma 3.2,
(E1 ⊕ E2) ≺L0 E3. This proves the claim.

Step 2. Let l1 = L0(ε/2,K + ε) be determined by Step 1 for constants ε/2 and
K+ε, ε′2 = ε4(K+ε, l1), L1 = L(K+ε, l1) (we may assume that ε′2 ≤ min{ε/2, ε′})
determined by Lemma 4.1, δ = δ(ε′2/2,K + ε) determined by item 1 of Lemma 2.6
and η = η(δ) determined by Lemma 5.2.

We claim that if (Σ, f, E , A) is any 3-dimensional complex-diagonalizable SPLS
bounded by K with t(A) = (2, 1) such that every ε-perturbation of A exhibits a
2-eigenvalue gap, and for some orthonormal basis and C ≥ 1, An(x) has the form,

(6.10)
( |µ1|Rθ, C ∗

0 µ2

)

with |C−1 sin θ| ≤ η, where Rθ, C is defined by (5.8), then A has an (L1, 2)-
dominated splitting.
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In fact, we will show that for any ε′2/2-perturbation B of A with the form (6.10)
and |C−1 sin θ| ≤ η, then B has an (L1, 2)-dominated splitting.

Let B be any ε′2/2-perturbation of A with the form (6.10) and |C−1 sin θ| ≤ η.
According to Lemma 2.6 and 5.2 (see Lemma 2.7 for the form of perturbation),
there exists ε′2/2-perturbation B̃ of B such that t(B̃) = (1, 1, 1). Since ε′2 ≤ ε/2,
every ε/2-perturbation of B̃ exhibits a 2-eigenvalue gap. Hence B̃ has an (l1, 2)-
dominated splitting. Then according to Lemma 4.1 and ‖B̃−B‖ ≤ ε′2/2, B has an
(L1, 2)-dominated splitting.

Step 3. Let

α = min{α(δ, η, γ),
1

2(K + ε)2(l1+L1) + 1
},

where α(δ, η, γ) is determined by Lemma 5.3, and

l2 = l(ε′2/2, K + ε, α, C = 1, γ, d = 3)

determined by Lemma 4.4.
We claim that if (Σ, f, E , A) is any 3-dimensional complex-diagonalizable SPLS

bounded by K with t(A) = (2, 1) such that every ε-perturbation of A exhibits a
2-eigenvalue gap, and for some orthonormal basis, An(x) has the form (6.10), with
|C−1 sin θ| ≥ η, then A has an (l2, 2)-dominated splitting.

Let B be any ε′2/2-perturbation of A. We first show that α(E(B), F (B)) ≥
α. Since GLc(Σ, f, E) is dense in GL(Σ, f, E), we only have to prove for B ∈
GLc(Σ, f, E).

If t(B) = (1, 1, 1), then E(B) ≺l1 F (B) and hence

α(E(B), F (B)) ≥ 1
2(K + ε)2l1 + 1

by the formula given in Lemma 4.1.
If t(B) = (2, 1) and for some orthonormal basis, Bn(x) has the form (6.10) with

|C−1 sin θ| ≤ η, then according to Step 2, B has an (L1, 2)-dominated splitting
E(B)⊕ F (B). Hence

α(E(B), F (B)) ≥ 1
2(K + ε)2L1 + 1

.

If t(B) = (2, 1) and for some orthonormal basis, Bn(x) has the form (6.10) with
|C−1 sin θ| ≥ η, then C−1 ≥ η and | sin θ| ≥ η. So, after a uniformly bounded change
of metric, we may assume that C = 1. Since ε′2 ≤ ε/2, every ε′2/2-perturbation of
B has a 2-eigenvalue gap, by Lemma 5.3,

α(E(B), F (B)) ≥ α(δ, η, γ).

This proves that α(E(B), F (B)) ≥ α for every ε′2/2-perturbation B of A.
Now, according to Lemma 4.4, A admits an (l2, 2)-dominated splitting.
Let

l = L0L1l2.

Hence in any case, we have that A admits an (l, 2)-dominated splitting. ¤
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Proof of Proposition 2.5 for d = 4 and i = 2: The proof of this case is similar
to d = 3. We still give the precise determination of constants for completeness.

First, let ε′ = ε5(ε,K), γ = γ(ε,K) be determined by Lemma 4.2.
Step 1. Let ε′1 = ε3(ε,K) be determined by Lemma 3.3 and l0 = l(ε′1,K)

be determined by Proposition 2.5 for d = 2, 3. And then let L0 = L(K, l0)
be determined by Lemma 3.2. We claim that if (Σ, f, E , A) is any 4-dimensional
complex-diagonalizable SPLS bounded by K such that every ε-perturbation of A

exhibits a 2-eigenvalue gap and

t(A) ∈ {(1, 1, 1, 1), (2, 1, 1), (1, 1, 2)},
then A has an (L0, 2)-dominated splitting.

We omit the proof since it is similar to Step 1 for d = 3 and the proof for general
d in §3.

Step 2. Let l1 = L0(ε/2,K + ε) be determined by Step 1, ε′2 = ε4(K + ε, l1),
L1 = L(K+ε, l1) (we may assume that ε′2 < min{ε/2, ε′}) be determined by Lemma
4.1, δ = δ(ε′2/2,K + ε) determined by item 1 of Lemma 2.6, η = η(δ) determined
by Lemma 5.2,

We claim that if (Σ, f, E , A) is any 4-dimensional complex-diagonalizable SPLS
bounded by K with t(A) = (2, 2) such that every ε-perturbation of A exhibits a
2-eigenvalue gap, and for some orthonormal basis and C ≥ 1, D ≥ 1, An(x) has
the form,

(6.11)
( |µ1|Rθ, C ∗

0 |µ2|Rφ, D

)

with |C−1 sin θ| ≤ η or |D−1 sin φ| ≤ η, then A has an (L1, 2)-dominated splitting.
In fact, we will show that for any ε′2/2-perturbation B of A with the form (6.11),

|C−1 sin θ| ≤ η or |D−1 sin φ| ≤ η, then B has an (L1, 2)-dominated splitting.
Let B be any ε′2/2-perturbation of A with the form (6.11) with |C−1 sin θ| ≤ η or

|D−1 sin φ| ≤ η. According to Lemma 2.6 and 5.2, there exists ε′2/2-perturbation B̃

of B such that t(B̃) = (2, 1, 1) or (1, 1, 2). Since ε′2 ≤ ε/2, every ε/2-perturbation
of B̃ exhibits a 2-eigenvalue gap. Hence B̃ has an (l1, 2)-dominated splitting. Then
according to Lemma 4.1 and ‖B̃−B‖ ≤ ε′2/2, B has an (L1, 2)-dominated splitting.

Step 3. Let

α = min{α(δ, γ),
1

2(K + ε)2(l1+L1) + 1
},

where α(δ, γ) is determined by Lemma 5.5, and

l2 = l(ε′2/2, K + ε, α, C = 1, γ, d = 4)

determined by Lemma 4.4.
We claim that if (Σ, f, E , A) is any 4-dimensional complex-diagonalizable SPLS

bounded by K with t(A) = (2, 2) such that every ε-perturbation of A exhibits a
2-eigenvalue gap and for some orthonormal basis, An(x) has the form (6.11) with
|C−1 sin θ| ≥ η and |D−1 sinφ| ≥ η, then A has an (l2, 2)-dominated splitting.

Let B be any ε′2/2-perturbation of A. We first show that α(E(B), F (B)) ≥ α.
We only have to prove for B ∈ GLc(Σ, f, E).
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If t(B) ∈ {(1, 1, 1, 1), (2, 1, 1), (1, 1, 2)}, then E(B) ≺l1 F (B) and hence

α(E(B), F (B)) ≥ 1
2(K + ε)2l1 + 1

.

If t(B) = (2, 2) and for some orthonormal basis, Bn(x) has the form (6.11) with
|C−1 sin θ| ≤ η or |D−1 sinφ| ≤ η, then according to Step 2, E(B) ≺L1 F (B) and
hence

α(E(B), F (B)) ≥ 1
2(K + ε)2L1 + 1

.

If the type of B is (2, 2) and for some orthonormal basis, Bn(x) has the form
(6.11) with |C−1 sin θ| ≥ η and |D−1 sinφ| ≥ η, then

C−1 ≥ η, | sin θ| ≥ η, D−1 ≥ η, | sin φ| ≥ η.

So, after a uniformly bounded change of metric, we may assume that C = D = 1.
If

α(E(B), F (B)) ≤ α(δ, γ),

by Lemma 5.5, there exists ε′2/2-perturbation B̃ (since GLc(Σ, f, E) is dense in
GL(Σ, f, E), we may assume that B̃ ∈ GLc(Σ, f, E)) of B such that

t(B̃) ∈ {(1, 1, 1, 1), (2, 1, 1), (1, 1, 2)}.
Since ε′2 ≤ ε/2, every ε/2-perturbation of B̃ exhibits a 2-eigenvalue gap, B̃ has an
(l1, 2)-dominated splitting and hence B has an (L1, 2)-dominated splitting. So,

α(E(B), F (B)) ≥ 1
2(K + ε)2L1 + 1

.

This proves that α(E(B), F (B)) ≥ α for every ε′2/2-perturbation B of A.
Now, according to Lemma 4.4, A admits an (l2, 2)-dominated splitting.
Let

l = L0L1l2.

Hence in any case, we have that A admits an (l, 2)-dominated splitting. This finishes
the proof for d = 4, i = 2. ¤
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