
Trends in Mathematics

Information Center for Mathematical Sciences

Volume 6, Number 2, December, 2003, Pages 113–123

MODELING GENETIC ALGORITHMS FROM A LINEAR
OPERATOR POINT OF VIEW. A SURVEY OF RECENT

ADVANCES AND FUTURE PERSPECTIVES

LOTHAR M., SCHMITT

Abstract. We present an overview over recent advances in stochastic mod-

eling of genetic algorithms. In addition, we discuss possible future research

activities in this field.

1. Introductory overview

What is a genetic algorithm? Genetic algorithms are a simulation method
that borrows its fundamental ideas from principles which allegedly govern evolu-
tion in nature. An early reference to the idea of biology-inspired computing and
optimization is, e.g., [3]. A genetic algorithm usually comprises three operators:
mating (crossover), mutation, and selection. These operators act on finite popu-
lations consisting of creatures (candidate solutions) taken from a set C. Crossover
models the exchange and recombination of genetic information of creatures and
is inspired by exchange and recombination of genetic information in living organ-
isms, e.g., during the process of sexual reproduction. Mutation models random
change in the genetic information of creatures and is inspired by random change
of genetic information in living organisms, e.g., through the effects of radiation or
chemical mismatch. Fitness selection models reproductive success of adapted or-
ganisms in their environment and, in computer implementations, usually includes
a random rearrangement of the creatures/individuals in a population. After initial-
izing a population, a genetic algorithm iterates crossover, mutation, and selection
in accordance with the following table until a termination condition is satisfied:

Step 0 Initialize population p = (c1, . . . , cs) with c1, . . . , cs ∈ C.
Step 1 Apply crossover to pairs (c2σ−1, c2σ) of creatures in p, 1≤σ≤s/2.
Step 2 Apply mutation to the genetic information in p.
Step 3 Apply the selection mechanism to the family of creatures in p.
Step 4 If termination condition is satisfied, then stop,

else continue at step 1.

Typical termination conditions are: ‘the best creature seen so far does not change
for a long period of time’, ‘the best creature seen so far meets a certain standard’,

c©2003 Information Center for Mathematical Sciences

113

114 LOTHAR M., SCHMITT

‘an analysis has determined that after a certain number of cycles the probability
to have seen the best creature is sufficiently close to 1’ (cf. [2], [12, proof of Thm.
V.4.3 (p. 160)], [26, proof of Thm. 3.3.2]) or simply ‘end of allocated computation
time’.

There are several principle attitudes to look at genetic algorithms: some re-
searchers see them primarily as a means to model and study evolutionary princi-
ples in nature, others such as this author see them primarily as a computational
optimization method which is biology-inspired.

From now on, we shall limit the discussion to the second point of view, i.e.,
genetic algorithms whose goal is to find globally optimal creatures in C in regard
to a fitness function f : C → R.

The tensor-string model for populations. As a first step in developing a
mathematical description for the behavior of genetic algorithms, many researchers
have studied the asymptotics of these algorithms using a Markov chain model as
primary tool. A quite extensive listing of related references in this regard can
be found in [24, 25, 26]. This approach follows, in principle, the historic route
for handling the simulated annealing algorithm [1] where substantial results on
asymptotics were obtained first (e.g., [11]) and subsequently finite-length algorithms
were mastered (cf. [4, 5, 6, 7]).

Before one can set up a Markov chain model, one has to define the underlying
state space, i.e., one has to specify a model for populations. There are, essentially,
two models for populations in use: the multi-set model and the tensor-string model.

The multi-set model describes a population p with s creatures as a family of
pairs (c, #(c, p)) where c ∈ C and #(c, p) ∈ N ∩ [1, s] denotes the number of copies
of c in p. This description of populations was initiated in research in [8, 9, 16, 30]
and has been used in many subsequent studies. See also [31].

An alternate model to describes a population is the tensor-string model initiated
independently in [18, 21]. Here, the population is simply an ordered tuple (list) of
creatures which themselves are words (list of genes) over the underlying alphabet
in accordance with usual representation of populations in computer memory. One
advantage of this approach is the possibility to introduce spatial structure into the
model by considering local-dependent genetic operators. Another advantage is that
the genetic operators mutation and crossover on populations can be described by
suitable tensor-products of simpler basic components (see, e.g., [24, Prop. 3.6.2],
[29, Sec. 2.1, formula (4)] in regard to mutation, and [21, p. 114, line 5], [25, Sec.
2.4–5] in regard to crossover). A third advantage of the tensor-string model is
that it can easily be extended to populations containing several types of creatures
(species) in a coevolutionary setting that allows optimization via “arms-races” of
species. See [27, 28, 29].

The multi-set model in the single-species setting can be recovered from the
tensor-string model via projection into the quotient space over the kernel of per-
mutations on these populations. This is outlined in [24, Sec. 2.9].

MODELING GENETIC ALGORITHMS FROM A LINEAR OPERATOR POINT 115

After a model for populations is fixed, the vector space V℘ underlying the model
becomes the free vector space over the set of populations1 ℘ containing the simplex
S℘ of probability distributions over populations. S℘ is the relevant state space
for investigating genetic algorithms where the stochastic matrices representing the
genetic operators act.

Spectral and geometric properties of mixing. The tensor-string model
allows to investigate spectral and geometric/contraction properties of the stoch- as-
tic matrix Mµo,µ ·Cχ associated with the crossover-mutation operator in a genetic
algorithm with general-size alphabet in a natural fashion. In regular circumstance,
the stochastic matrices Mµo,µ and Cχ associated with mutation and crossover are
self-adjoint and commute (cf. [24, Secs. 3.2–3, 5]). Thus, their combined spec-
trum can be computed from the individual spectra. By representing mutation and
crossover on populations through suitable tensor-products of simpler basic compo-
nents, the individual spectra of crossover and mutation can be explicitly computed
for a variety of settings (see additional comments below). Such findings extend
and contribute to understanding results in [14]. By computing spectral estimates
and analyzing invariant subspaces for crossover and mutation, one can show how
the crossover operator enhances the averaging procedure of the mutation operator
in the mixing phase (random generator phase, i.e., steps 1–2 in the table shown
above) of the genetic algorithm. See [21, Prop. 10] and [24, Thm. 6.1] for results in
this regard.

We note that the Vose-Liepins version of crossover-mutation as advocated in
[31, Sec. 5.4: p. 44] is also explicitly integrated in our approach using the tensor-
string model (cf. [26, Sec. 3.5]). By mapping the tensor-string model to the multi-
set model through the projection procedure mentioned above, we can compute
corresponding spectral estimates for crossover-mutation in the multi-set model as,
e.g., [24, Thm. 6.2] and thus can rigorously extend [14].

Let us further note at this point that under exceptional circumstances a properly
chosen crossover operator may yield dramatic improvement of a genetic algorithm.
One example of such a situation is analyzed in [13].

The analysis of invariant subspaces for crossover (see, e.g., [21, Prop. 7.5]) also
shows that crossover alone is not a suitable mixing operator in regard to optimiza-
tion in contrast to popular belief and some results in the literature [17] even if
one starts the algorithm from a “genetically rich” population. Genetic algorithms
without mutation do not yield ergodic procedures (Markov chains). This should be
apparent by considering an initial uniform population filled with copies of a single
suboptimal solution which can never be changed neither by common crossover op-
erators nor by one of the commonly used selection operators. Genetic algorithms
without mutation rather show a possibly misleading convergence effect called ge-
netic drift. A model for genetic drift is discussed in detail in [22, Sec. 6] based upon
the analysis of contraction properties of the selection operator towards uniform
populations.

1We shall identify populations p ∈ ℘ and base-vectors in what follows.

116 LOTHAR M., SCHMITT

The necessity of annealing. A genetic algorithm is called simple, if all
operators in steps 1–3 of the table shown above stay constant over the course
of the algorithm. Let G be the stochastic matrix associated with a simple genetic
algorithm. Study of the simple genetic algorithm with regular operators shows that
a finite number of iterates yields a associated stochastic matrix Gt, t ∈ N, which
is fully positive. Consequently, the associated invariant probability distribution
v = Gv ∈ S℘ (cf. [26, Prop. 1.3.2] or [19, Ch. 1]) is fully positive and the algorithm
does not asymptotically converge to optima. See [24, Thms. 8.1–2].

The preceding simple observation makes it necessary to vary at least some of
the genetic operators over time in order to obtain an algorithm that converges
asymptotically towards global maxima. The main result of [8] shows that anneal-
ing the mutation rate to 0 alone and consequently having the mutation operator
approaching the identity operator 1 does not yields success. Thms. 8.2–3 of [24]
show that increasing the selection pressure alone does also fail to achieve the goal
of asymptotic global optimization. Varying the crossover operator alone is also of
limited interest since it does not completely control mixing nor does it control the
selection pressure towards optimal solutions in any way. Consequently, one has to

(Condition M) anneal the mutation rate to 0 in order to avoid asymptotically a
positive probability for suboptimal solutions,

(Condition S) increasing the selection pressure in an unbounded fashion (see
details below) in order to stir the algorithm towards a limit probability distribution
which is positive only over populations containing optimal creatures, and

(Condition C) (possibly) anneal the crossover rate to 0 such that the crossover
operator approaches asymptotically the identity operator 1 as well.

In what follows, we shall be dealing with satisfying the above conditions (M),
(S) and (C) in order to obtain a scaled genetic algorithm that asymptoticly con-
verges to global optima. We note that [24, Thm. 8.6] shows that under quite
reasonable but not absolutely general circumstances condition (C) need not be
satisfied. Mathematically, the above conditions means dealing with an inhomoge-
neous Markov chain in order to describes the probabilistic behavior of the scaled
genetic algorithm both step-by-step and asymptotically.

2. Some Notation

The underlying alphabet and definition of creatures. Extending the
discussion of binary genetic algorithms (but also including it), the alphabet A =
{a(0) . . . a(α−1)} of size α, 2 ≤ α ∈ N, is primarily interpreted here as a set of
equidistant real numbers. This is inspired by optimization of real-valued functions
in compact domains of R`, ` ∈ N (see, e.g., [20, 23]), i.e., creatures are defined
as words of length ` over A. Thus, C = A`. For certain definitions such as the
definition of the spot mutation matrix m(µo) given below, we shall assume for
reason of mathematical convenience that the alphabet is cyclic, i.e., isomorphic
to Zα and assume that optima of the fitness function are located away from the

MODELING GENETIC ALGORITHMS FROM A LINEAR OPERATOR POINT 117

boundaries of the “cube” described by C = A`, i.e., away from points containing
a(0) and a(α−1) as coordinates. Let V1 denote the free vector space over A.

Populations. The set of populations ℘ is now simply defined as ℘ = Cs = AL,
4 ≤ s ∈ 2N, L = ` · s. Let V℘ denote the free vector space over ℘.

Let U ⊂ V℘ be the free vector space over all populations which are uniform, i.e.,
which consist of s copies of a single creature. Consequently, ℘∩U shall denote the
set of uniform populations (identifying populations and base-vectors). In addition,
PU shall denote the orthogonal projection onto U .

3. Scaling the genetic operators and convergence

The spot mutation matrix m(µo) and neighborhood-based search.
Let µo ∈ [0, 1]. In order to let mutation perform a scalable compromise between
pure random search (µo=1) and neighborhood-based change (µo=0) on the alphabet
level, one defines the stochastic spot mutation matrix m(µo) as follows: for 0 ≤ ι 6=
ι′ ≤ α−1 let

<a(ι′),m(µo)a(ι)> = (1− µo)/(2n) + µo/(α− 1), if d(a(ι′), a(ι)) ≤ n. (1)

<a(ι′),m(µo)a(ι)> = µo/(α− 1), if d(a(ι′), a(ι)) > n. (2)

Here d is the cyclic distance on Zα and n ∈ N is fixed describing the size of
a “preferred” small neighborhood of a letter a(ι). In case µo=0, change is only
possible with equal probability 1/(2n) to one of the neighbors of a(ι). In case
µo=1, change is possible with equal probability 1/(α−1) to any element of A.

Multiple-spot mutation Mµo,µ and weak ergodicity. Multiple-spot mu-
tation applies the probabilistic change determined by the spot mutation matrix
m(µo) sequentially with probability and mutation-rate µ∈(0, 1/2) to every letter
a(ιλ̂), 1≤λ̂≤L, in the combined word of length L over A representing the current
population. For a more formal definition see [24, Sec. 3.3] or [26, Sec. 2.1.1]. The
associated symmetric stochastic matrix Mµo,µ is then fully positive, invertible and
satisfies:

Mµo,µ =
⊗L

λ̂=1((1− µ)1 + µ m(µo)). (3)

In particular, there exist Ko ∈ R+
∗ such that

Koµ
LµL

o ≤ <q,Mµo,µp> for every p, q ∈ ℘. (4)

In order to make the inhomogeneous Markov chain representing the scaled genetic
algorithm weakly ergodic2, one then schedules the mutation-rate µ and the balance
µo between local and random search on the alphabet level in accordance with the
following two possibilities:

κo = 1, µo ∈ (0, 1] is fixed, µ(t) = (t + 1)−1/L/2. (5)

2See [12, pp. 142–151, p. 151: Thm. V.3.2] for treatment of this well-known topic in full

generality. Alternatively, [26, Prop. 1.3.1, Sec. 3.2] treats weak ergodicity with simpler means

particularly tailored towards the situation of the inhomogeneous Markov chain considered in this

exposition.

118 LOTHAR M., SCHMITT

κo ∈ (1,∞) is fixed, µo(t) = µ(t)κo−1, µ(t) = (t + 1)−1/(κoL)/2. (6)

For a proof of the fact that these annealing schedules yield a weakly ergodic inho-
mogeneous Markov chain that describes the resulting scaled genetic algorithm use
line (4) and [24, Thm. 4.2].

Crossover. In order to limit this presentation, let us only discuss the case of
single-cutpoint regular crossover Cχ. See [21, Sec. 2.2] [24, Sec. 5] [26, Sec. 2.2] [25,
Sec. 2.3–5] for further details and generalizations.

In order to execute single-cutpoint regular crossover Cχ, the current population
p = (c1, . . . , cs), c1, . . . , cs ∈ C, is divided into pairs (c2σ−1, c2σ), 1≤σ≤s/2. To each
of the s/2 pairs, the single-cutpoint operation C̄ is then applied with probability
and crossover-rate χ ∈ [0, 1].

The single-cutpoint operation C̄ randomly selects a cutpoint λ∈[1, `−1] and then
exchanges the genes/letters of c2σ−1 and c2σ in the first λ components. Thus, λ=1
corresponds to exchanging only the first letter of c2σ−1 and c2σ, while λ=`−1
corresponds to exchange of all but the last letter. We have

C̄ = (`− 1)−1
∑`−1

λ=1 C(λ) (7)

where C(λ) is a unitary stochastic matrix acting on V℘|s=2 that corresponds to
switching letters in the first λ components within pairs of creatures. With this
description of C̄, we have

Cχ =
⊗s/2

σ=1((1− χ)1 + χ C̄) (8)

Estimating the spectrum of C̄ using line (7), and then using line (8), one obtains
that the second largest eigenvalue of Cχ is given by 1 − 2χ/(` − 1) for sufficiently
small χ. This fact can be combined with the spectral analysis of mutation via
line (3) to obtain spectral estimates for the second largest eigenvalue of crossover-
mutation. Consult [24, Thm. 6.2] in this regard.

Except for the very next section of this presentation, we shall suppose that the
crossover rate χ satisfies

χ(t) = µ(t)1/m, m ∈ N fixed. (9)

The mutation flow inequality. The mutation flow inequality listed in line
(12) is a simple but important insight that together with a contraction property
of fitness selection towards uniform populations listed below assures asymptotic
convergence of the scaled genetic algorithm considered here to a probability dis-
tribution v∞ that is strictly positive only over ℘ ∩ U . In fact using the notation
established thus far, we have (cf. [26, Prop. 3.1.1], [25, Prop. 2.2.3, partial proof]):

βµ = β(Mµo,µ) = min{||PUMµo,µp||1 : p ∈ ℘ ∩ U} ∈ (0, 1), (10)

limµ→0 βµ = 1, and (11)

||(1− PU)Mµo,µCχv||1 ≤ 1− βµ + βµ||(1− PU)v||1, ∀v ∈ S℘. (12)

MODELING GENETIC ALGORITHMS FROM A LINEAR OPERATOR POINT 119

The constant βµ in line (10) has been explicitly computed for some cases in [21,
Prop. 4.4], [24, Prop. 3.7.4], [25, Prop. 2.2.3], and the statement in line (12) can
be somewhat strengthened. The mutation flow inequality shows how the mutation
operation controls the balance between uniform and non-uniform populations in a
genetic algorithm.

Proportional fitness selection. Fitness selection models reproductive suc-
cess of adapted organisms in their environment and, usually, includes a random
rearrangement of the creatures/individuals in a population. In this exposition, we
shall restrict the discussion to scaled proportional fitness selection based upon a
given fitness function f : C → R+

∗ (consult, e.g., [10, p. 16], [21, Sec. 2.3], or [24,
Sec. 7.1]) which is used in standard applications of genetic algorithms to select the
creatures in the future population from the creatures in the present population af-
ter the crossover-mutation operation. The presentation given here generalizes to a
population-dependent fitness function such as rank based upon an f : C → R+

∗ as
above (cf. [25]). Consult [24, Sec. 7.3] for a suitable definition of rank.

We note that a typical population-dependent fitness function arises, if one con-
siders coevolutionary optimization among creatures from a single “species”. For
example, game-playing strategies that represent creatures in a population are eval-
uated by playing each other. Thus, the convergence results mentioned below solve
the coevolutionary optimization problem for one species. See [27, 28, 29] for gener-
alizations of these results to a multi-species setting.

Let Cmax ⊂ C be the set of creatures where f assumes maximal value. The
optimization algorithm is supposed to find elements in Cmax. Let

ρ2(f) = min{f(c)/f(d) : c ∈ Cmax, d ∈ C \ Cmax 6= ∅} > 1. (13)

ρ2(f) measures the “strength” of second-to-best creatures d.
Next, we define power-law scaling of the fitness function in accordance with, e.g.,

[10, p. 124], [21, Sec. 2.3], [24, Sec. 7.1]. Let κo as in lines (5–6), m as in line (9),
and B ∈ R+

∗ such that

κo` < κoLB log(ρ2(f)) + 1/m. (14)

Now, we set for c ∈ C and t ∈ N:

ft(c) = (f(c))g(t), g(t) = B · log(t + 1). (15)

In this exposition, we shall only consider logarithmic scalings g(t) as listed above
which are unbounded. It has been shown in [24, Thm. 8.5] with a remarkably
simple “linear operator type” argument, that faster scalings with, e.g., linear growth
g(t) = at+ b in the exponent are of limited value, in particular, in regard to the use
of a crossover operation. In fact, such algorithms are asymptotically equivalent to
a “take-the-best” algorithm [24, Def. 8.4] where one cycle of the algorithm consists
of the mutation-step and picking maximal creatures in the current population.

In cycle t∈N of the algorithm, scaled proportional fitness selection St selects
creatures c in the current population p with a probability that is proportional to
ft(c) and the number of occurrence #(c, p) of c in p for the subsequent population

120 LOTHAR M., SCHMITT

q (which is then subject to the next cycle of the algorithm corresponding to t+1).
Consult, e.g., [24, Sec. 7.1], [26, Sec. 2.3] for more detail. Let St also denote the
stochastic matrix associated with scaled proportional fitness selection. St acts on
V℘ and describes transition probabilities for entire populations. The following facts
describe basic properties of St. For p = (c1, c2, . . . , cs), q = (d1, d2, . . . , ds) ∈ ℘,
cσ, dσ ∈ C, 1 ≤ σ ≤ s, one has:

<q, Stp> = (
∑s

σ=1 ft(cσ))−s ·∏s
σ=1 #(dσ, p) ft(dσ). (16)

If p ∈ ℘ ∩ U , then Stp = p. (17)

||PUStp||1 ≥ 1− θ, with θ = 1− s−s. (18)

If v ∈ S℘, then ||(1− PU)Stv||1 ≤ θ · ||(1− PU)v||1. (19)

Strong ergodicity and convergence to uniform populations. Let (Gt)t∈N

denote the inhomogeneous Markov chain that describes the probabilistic behavior
of the scaled genetic algorithm considered here:

Gt = StMµo(t),µ(t)Cχ(t). (20)

Strong ergodicity as discussed in [12, p. 157: Sec. V.4] follows now from the func-
tional form of the stochastic matrices involved in the model here and weak ergodicity
discussed above. In fact, one verifies the conditions of [12, p. 160: Thm. V.4.3] or
[26, Thm. 3.3.2]. This verification uses the techniques in [24, Thm. 8.6.1, proof, pp.
53–54] to show:

∑∞
t=1 ||vt+1 − vt||1 < ∞ where vt = Gtvt ∈ S℘, cf. [19, p. 7: Prop. 2.3]. (21)

vt is uniquely determined for µ < 1/2 using [25, Lemma 1.3.2.2] or [26, 1.3.2].
Convergence to uniform populations is shown by a remarkably simple “geometric

series” type argument (cf. [24, Thm. 8.2.3, proof], [26, Thm. 3.1.2]) that combines
the mutation flow inequality given in line (12) and the contraction property of the
selection operator given in line (19).

Convergence to optima. In order to be able to show convergence to optima,
one needs to add one additional ingredient to the conditions already established in
lines (5), (6), (9) and (14). In fact, one needs

2mκo` < s. (22)

This inequality shows that for large population size s one is allowed a large m and
consequently (cf. line (9)) a more relaxed annealing schedule for crossover. Thus,
crossover (which is related to the algorithm-design since it exchanges structural
elements of creatures) is allowed to perform its enhancement of mutation during
the mixing phase of the genetic algorithm in more significant way.

Convergence towards optima is shown by establishing a “steady-state flow in-
equality” similar to [24, p. 54: line (43)] and [26, proof of Thm. 3.4.1, line (26)]. In
fact, one analyzes the probabilistic flow between ||PΩvt||1 and ||(1−PΩ)vt||1 under
a single application of Gt to vt, where as above vt = Gtvt, and PΩ is the projection

MODELING GENETIC ALGORITHMS FROM A LINEAR OPERATOR POINT 121

onto the space generated by populations containing only optimal creatures. This
yields an inequality implying ||PΩvt||1 → 1 as t →∞.

4. Challenges for further research

In order to keep the size of this exposition limited, we can only roughly sketch
some ideas for subsequent research activities that continue the line of activities
presented thus far. A detailed exposition of open research challenges is presented
in [26, Chp. 4].

Non-fully-positive mutation. In the opinion of this author, the most impor-
tant challenge at this point in theory of genetic algorithms is to find a mathematical
approach to the situation where the mutation operator does not yield a fully pos-
itive matrix. Providing a framework that would establish convergence results for
scaled genetic algorithms with non-fully-positive mutation similar to the results
presented here, would —in the opinion of this author— constitute a major mathe-
matical achievement as well as a significant contribution to the field of probabilistic
algorithms. Techniques involving modeling via linear operators and Banach spaces
(`1.2) similar to some applications in treating simulated annealing [4, 5, 6, 7] may
be of value.

Finite length analysis and noise. After asymptotics for scaled genetic algo-
rithms with non-fully-positive mutation is established satisfactory (presumed eas-
ier), one should pursue transition of analysis to finite length algorithms (presumed
more difficult) following the historic route for handling the simulated annealing al-
gorithm [1] where substantial results on asymptotics were obtained first (e.g., [11])
and subsequently finite-length algorithms were mastered (cf. [4, 5, 6, 7]).

Another interesting point to treat is adding sampling noise following [15]. This is
motivated by the fact, that fitness evaluation of creature may be done by executing
a simulation with random elements that add “noise” to the fitness value.

Modeling programming. In models for genetic programming, the length of
creatures (i.e., programs) is usually not bounded even though realisticly, all pro-
grams are of finite length with global upper bound. Thus, the space of possible
populations becomes infinite in an idealized setting. It is an interesting mathemat-
ical challenge with significant relations to important application aspects to adapt
the framework presented above to the general setting for genetic programming.

Going even further, it is, in the opinion of this author, a quite interesting and
rewarding challenge to develop a comprehensive operator framework for theoretical
treatment of “computability, algorithms and data-structures.” Such research should
open a larger field of applications to operator theory and yield new insights into
problem instances of practical value.

References

[1] E.H.L. Aarts, P.J.M. van Laarhoven. Simulated Annealing: An Introduction. Statist. Neer-

landica 43 (1989), pp. 31–52

122 LOTHAR M., SCHMITT

[2] H. Aytug, G.J. Koehler. Stopping Criteria for Finite Length Genetic Algorithms. INFORMS

J. on Computing 8 (1996), pp. 183–191

[3] H.J. Bremermann, J. Rogson, S. Salaff. Global Properties of Evolution Processes. In: H.H.

Pattee, E. Edelsack, L. Fein, A. Callahan (eds.). Natural Automata and Useful Simulations.

Spartan Books, Washington, DC, USA (1966), pp. 3–42

[4] O. Catoni. Large Deviations for Annealing. Ph.D. Dissertation, Université Paris XI, Paris,

France (1990)

[5] O. Catoni. Sharp Large Deviations Estimates for Simulated Annealing Algorithms. Ann. de

`’Inst. Henri Poincaré. Prob. & Stat. 27 (1991), pp. 291–383

[6] O. Catoni. Applications of Sharp Large Deviations Estimates to Optimal Cooling Schedules.

Ann. de `’Inst. Henri Poincaré. Prob. & Stat. 27 (1991), pp. 493–518

[7] O. Catoni. Rough Large Deviations Estimates for Simulated Annealing — Application to

Exponential Schedules. Ann. of Probability 20 (1992), pp. 1109–1146

[8] T.E. Davis, J.C. Principe. A Simulated Annealing-like Convergence Theory for the Simple

Genetic Algorithm. In: R.K. Belew, L.B. Booker (eds.), Proc. 4th Int. Conf. on Genetic

Algorithms ’91, Morgan Kaufmann Publ., San Francisco, CA, USA (1991), pp. 174–181

[9] T.E. Davis, J.C. Principe. A Markov Chain Framework for the Simple Genetic Algorithm.

Evol. Comput. 1 (1993), pp. 269–288

[10] D.E. Goldberg. Genetic Algorithms, in Search, Optimization & Machine Learning. Addison-

Wesley Publ., Boston, MA, USA (1989)

[11] B. Hajec. Cooling Schedules for Optimal Annealing. Mathematics of Operations Research 13

(1988), pp. 311–329

[12] D.L. Isaacson, R.W. Madsen. Markov Chains: Theory and Applications. Prentice-Hall Publ.,

Upper Saddle River, NJ, USA (1961)

[13] T. Jansen, I. Wegener. Real royal road functions — where crossover provably is essential.

In: L. Spector, E.D. Goodman (eds.). Proc. GECCO 2001. Morgan Kaufmann Publ., San

Francisco, CA, USA (2001), pp. 375-382

[14] G.J. Koehler. A Proof of the Vose-Liepins Conjecture. Ann. Math. Artif. Intell. 10 (1994),

pp. 408–422

[15] H.J. Kushner. Asymptotic Global Behavior for Stochastic Approximation and Diffusions with

Slowly Decreasing Noise Effects: Global Minimization via Monte Carlo. SIAM J. Appl. Math.

47 (1987), pp. 169–185

[16] A.E. Nix, M.D. Vose. Modeling Genetic Algorithms with Markov Chains. Ann. Math. Artif.

Intell. 5 (1992), pp. 79–88

[17] R. Poli. Exact Schema Theory for Genetic Programming and Variable-Length Genetic Al-

gorithms with One-Point Crossover. Genetic Programming and Evolvable Machines 2 (2001),

pp. 123–163

[18] G. Rudolph. Convergence Analysis of Canonical Genetic Algorithms. IEEE Trans. on Neural

Networks 5 (1994), pp. 96–101

[19] H.H. Schaefer. Banach Lattices and Positive Operators. Die Grundlehren der mathematischen

Wissenschaften in Einzeldarstellungen 215, Springer Verlag, Berlin, Germany (1974)

[20] V. Savchenko, L.M. Schmitt. Reconstructing Occlusal Surfaces of Teeth using a Genetic

Algorithm with Simulated Annealing Type Selection. In: D.C. Anderson, K. Lee (eds.). Proc.

of the Sixth ACM Symp. on Solid Modeling and Appl. ACM Press, New York, NY, USA

(2001), pp. 39–46

[21] L.M. Schmitt, et al.. Linear Analysis of Genetic Algorithms. Theoret. Comput. Sci. 200

(1998), pp. 101–134

[22] L.M. Schmitt, C.L. Nehaniv. The Linear Geometry of Genetic Operators with Applications

to the Analysis of Genetic Drift and Genetic Algorithms using Tournament Selection. Lect.

on Math. in the Life Sci. 26, AMS, Providence, RI, USA (1999), pp. 147–166

[23] L.M. Schmitt, T. Kondoh. Optimization of Mass Distribution in Articulated Figures with

Genetic Algorithms. In: M.H. Hamza (ed.). Proc. IASTED Int. Conf. ‘Applied Simulation

and Modelling’. IASTED/ACTA Press, Calgary, AB, Canada (2000), pp. 191–197

MODELING GENETIC ALGORITHMS FROM A LINEAR OPERATOR POINT 123

[24] L.M. Schmitt. Theory of Genetic Algorithms. Theoret. Comput. Sci. 259 (2001), pp. 1–61

[25] L.M. Schmitt. Theory of Genetic Algorithms II. —Models for genetic operators over the

string-tensor representation of populations and convergence to global optima for arbitrary

fitness function under scaling.Theoret. Comput. Sci.310(2004), 181–231

[26] L.M. Schmitt. Asymptotic Convergence of Scaled Genetic Algorithms to Global Optima —A

gentle introduction to the theory. In: A. Menon (ed.), Frontiers of Evolutionary Computation.,

Kluwer Ser. in Evol. Comput. (D.E. Goldberg, ed.), Kluwer, Dordrecht, The Netherlands

(2004)

[27] L.M. Schmitt: Coevolutionary Convergence to Global Optima. Proceedings of the Genetic and

Evolutionary Computation Conference GECCO 2003, Chicago, IL, USA(July 12–16, 2003),

Erick Cantu-Paz etAI (eds.), Lecture Notes in Computer Science 2723, Springer Verlag, Berlin,

Germany(2003), 373-375.

[28] L.M. Schmitt: Optimization with Genetic Algorithms in Multi-Species Environments. Pro-

ceedings of the Fifth International Conference on Computation Intelligence and Multimedia

Applications (ICCIMA 2003), Xidian University, Xi’an, China (September 27-30, 2003), Spon-

sored by IEEE, L. Jiao, H. Selvaraj, B. Verma and X. Yao (eds.), IEEE Computer Society

(publisher), ISBN 0-7695-1957-1, 194–199

[29] L.M. Schmitt: Theory of Coevolutionary Genetic Algorithms. Proceedings of ’The 2003 In-

ternational Symposium on Parallel and Distributed Processing and Applications’ ISPA 2003,

The University of Aizu, Aizu-Wakamatsu City, Fukushima, Japan (July 2–4, 2003). M. Guo,

L.T. Yang (eds.). Sponsored by ACM and IPSJ. Lecture Notes in Computer Science 2745,

Springer Verlag, Berlin, Germany (2003), pp. 285–293

[30] M.D. Vose, G.E. Liepins. Punctuated Equilibria in Genetic Search. Complex Systems 5 (1991),

pp. 31–44

[31] M.D. Vose. The Simple Genetic Algorithm: Foundations and Theory. MIT Press, Cambridge,

MA, USA (1999)

The University of Aizu School of Computer Science and Engineering Aizu-Wakamatsu

City, Fukushima Prefecture 965-8580, Japan

E-mail address: lothar@u-aizu.ac.jp

