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GRAPH C∗-ALGEBRAS AND TOPOLOGICAL ENTROPY

JA A JEONG

Abstract. Given a directed graph E, it is well known that there exists a

universal C∗-algebra C∗(E) generated by a Cuntz-Krieger E family. For ex-

ample, Cuntz-Krieger algebrasOA are graph C∗-algebras associated with finite

graphs. OA was first introduced and studied as an invariant of the topological

conjugacy class of the topological Markov shift (XA, σA) ([CK]), and the map

ΦE : C∗(E) → C∗(E) defined by

ΦE(x) =
∑

e∈E1

sexse
∗

played an important role in that direction of research. Choda ([Ch1]) proved

that for the Cunzt algebra On the Voiculescu’s topological entropy ([Vo]) be-

comes ht(Φn) = log n, which has been extended to Cuntz-Krieger algebras

OA in [BG] and [PWY] when A is an (irreducible) finite matrix with no sinks.

In this paper we discuss the Voiculescu’s topological entropy ht(ΦE) of the

(completely positive) map ΦE defined on a C∗-algebra C∗(E) when E is an

arbitrary directed graph ([JP2]). We also deal with some of other entropies like

the (classical) topological entropy htop(XE), Gurevic entropy, and a variant

of the Salama’s block entropy of the edge shift space of E.

1. Introduction

1.1. It is well known that for a directed graph E there exists a universal C∗-
algebra C∗(E) associated with E (see [KPR]). Recently the ideal structures, pure
infiniteness conditions, and stability conditions of graph C∗-algebras have been
obtained by many authors ([BHRS], [KPRR], [Hj], etc.). It is also known about
when C∗(E) has real rank zero in terms of loops in E ([JPS], [JP1]). More recently,
the possible stable range for C∗(E) has been obtained ([JPS], [DHS], [KPRR],
[BHRS]).

This class of graph C∗-algebras includes the Cuntz-Krieger algebras OA. Briefly,
if A = (Aij) is an n×n {0, 1}-matrix the algebra OA is defined to be the universal
C∗-algebra generated by n partial isometries {si | 1 ≤ i ≤ n} with orthogonal range
projections satisfying the relations:

s∗i si =
n∑

j=1

Aij sjs
∗
j ,

and if E is the finite graph with the incidence matrix A then OA is the graph
algebra C∗(E). Besides the class of C∗-algebras arising from graphs, there have
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been many generalizations of the Cuntz-Krieger algebras (for example, [EL], [Ma],
[Pm] among others).

1.2. The Cuntz-Krieger algebras OA were introduced in [CK] to study the shift
space induced by the n×n {0, 1}-matrix A. Such a matrix A is used as a transition
matrix in symbolic dynamics. Let σA be the subshift acting on the compact one-
sided shift space XA. Then it is proved in [CK] that the Cuntz-Krieger algebra OA

is an invariant for the topological conjugacy class of σA. The positive linear map
ΦA : OA → OA defined by

ΦA(x) =
n∑

i=1

si x s∗i

played an important role in the study of the algebra OA. If DA is the commutative
C∗-subalgebra of OA generated by {Φk

A(sis
∗
i ) | 1 ≤ i ≤ n, k ≥ 0} then DA is

identified with C(XA) in such a way that ΦA|DA
corresponds to the endomorphism

on C(XA) induced by the shift σA.

1.3. The map ΦA on the algebra OA is in fact a completely positive (cp) map
which is not necessarily a ∗-homomorphism, in general. Voiculescu [Vo] introduced
the topological entropy ht(α) for an automorphism of a unital nuclear C∗-algebra
A, and later the notion was extended to automorphisms on exact C∗-algebras by
Brown [Br]. But as described in [BG], even for a cp map Φ on an exact C∗-algebra
A one has the same definition of the topological entropy ht(Φ) simply by replacing
α by Φ.

Let On be the Cuntz algebra, that is, On = OA for the n × n matrix A with
all entries equal to 1. Then On is a simple unital purely infinite nuclear algebra
on which Φn(= ΦA) becomes a ∗-endomorphism. In [Ch1] Choda computed the
topological entropy of Φn showing that

ht(Φn) = log n.

On the other hand, if E is a finite graph, then one can consider two entropies, that
is, the block entropy h(XE) = lim supn→∞

1
n log |En| and the topological entropy

htop(XE) associated with the (compact) edge shift space (XE , σE), and then from
[Wt, Theorem 7.13] we see that the two entropies coincide each other. Moreover
it is easy to see that h(XE) = log n = log r(AE) if E is the graph consisting of n

simple loops at a single vertex (so that C∗(E) ∼= On) and r(AE) is the spectral
radius of the edge matrix AE of E. Thus for the Cuntz algebras On, Choda’s result
means that

ht(Φn) = log n = log r(AE) = h(XE) = htop(XE),

and this has been extended by Boca and Goldstein [BG] to a Cuntz-Krieger algebra
OA when A is the edge matrix of a strongly connected finite graph E. More gener-
ally, the same equality ht(ΦE) = log r(AE) is obtained for any finite graph E with
no sinks in [PWY] where the full C∗-dynamical systems are deeply investigated.

If E is a finite graph possibly with sinks, the cp map ΦE(= ΦAE ) is not unital.
We defined in [JP2] another cp map ΨE : C∗(E) → C∗(E) which is unital to prove
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that
ht(ΨE) = log r(AE),

and then using this fact we also proved that ht(ΦE) = log r(AE).

1.4. Let E be an infinite graph and C∗(E) = C∗{pv, se | v ∈ E0, e ∈ E1} be its
graph C∗-algebra. Then as in the case of finite graph one would think of the map
ΦE : C∗(E) → C∗(E) given by

ΦE(x) =
∑

e∈E1

sexs∗e

and its topological entropy ht(ΦE). But we first need to prove that the sum con-
verges and the map is a cp map. In [JP2], it is shown that if E is locally finite,
that is, if every vertex receives and emits only finitely many edges, then ΦE is a
well defined contractive cp map. Thus the topological entropy ht(ΦE) is defined.
Another problem we meet in dealing with the edge shift space XE is that it is not
compact any more, and so htop(XE) is not given. Nevertheless, if we use Gurevic’s
compactification XE ([Gu]) the following inequality can be shown ([JP2]);

htop(XE) ≤ ht(ΦE),

whenever E is a locally finite irreducible infinite graph. In fact, the left hand side
is equal to supE′ htop(XE′), where the supremum is taken over the set of all finite
subgraphs E′ of E ([Gu]). The inequality is proved by finding a commutative
C∗-subalgebra DE of C∗(E) such that ΦE(DE) ⊆ DE and htop(XE) = ht(ΦE |DE ).

Finally we consider the topological entropy ht(ΦE |A) of the map ΦE restricted
to the AF subalgebra A0 which is invariant under ΦE and DE ⊂ A. It is proved in
[JP3] that

ht(ΦE |A0) ≤ lim sup
n→∞

1
n

log |En(v)|,
where En(v) denotes the set of all finite paths with length n passing through the
vertex v. Here the value lim supn→∞

1
n log |En(v)| does not depend on the choice

of a vertex v if E is irreducible.

2. Graphs and graph C∗-algebras

Let E = (E0, E1, r, s) be a directed graph (or simply a graph) with a countable
vertex and edge sets E0 and E1, where r, s : E1 → E0 are the range and source
maps. By S(E) we denote the set of all sinks v (s−1(v) = ∅) of E. If a finite sequence
α == α1α2 · · ·αn of edges satisfies r(αi) = s(αi+1) for each i = 1, . . . , n − 1, α is
called a (finite) path of length |α| = n with the range r(α) = r(αn) and the source
s(α) = s(α1). En will be the set of all finite paths of length n, and we put
E∗ = ∪n≥0E

n (regarding each vertex as a finite path of length zero). A path α

(|α| > 0) with s(α) = r(α) is called a loop.
A graph E is said to have property (L) if every loop has an exit, and (K) if there

are at least two distinct loops at v whenever v lies on a loop.
For a graph E, a family {se, pv | e ∈ E1, v ∈ E0} of partial isometries se and

mutually orthogonal projections pv is called a Cuntz-Krieger E-family if it satisfies
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the following relations:

s∗ese = pr(e), ses
∗
e ≤ ps(e),

pv =
∑

s(e)=v

ses
∗
e if 0 < |s−1(v)| < ∞.

It is known (see [BHRS], [KPR] for example) that there exists a universal C∗-
algebra C∗(E) generated by a Cuntz-Krieger E-family {se, pv}. We call C∗(E)
the graph C∗-algebra associated with E. By universality there is the gauge action
γ : T→ Aut(C∗(E)) given by

γz(pv) = pv and γz(se) = zse.

If a row finite graph E satisfies (L) any two Cuntz-Krieger E-families of non-
zero elements give rise to the isomorphic C∗-algebra ([KPR]), which is called the
uniqueness theorem of graph algebras. Also if E is an arbitrary graph and {Se, Pv |
e ∈ E1, v ∈ E0} ⊂ B(H) is a Cuntz-Krieger E-family with an action β : T →
Aut(C∗(Se, Pv)) such that βz ◦π = π ◦ γz for z ∈ T (π : C∗(E) → C∗(Se, Pv) is the
∗-homomorphism such that se 7→ Se and pv 7→ Pv, such a homomorphism π exists
by universality of the graph algebra) then π is in fact an isomorphism ([BHRS]).

¿From definition it follows immediately that all graph algebras are separable since
we consider graphs E with countable vertices and edges (see (b) below). Moreover
the following useful and interesting facts are known for graph algebras.

(a) C∗(E) is unital if and only E has finitely many vertices.
(b) The linear span of the set {sαs∗β | α, β ∈ E∗} is norm dense in C∗(E),

where sα = sα1 · · · sαk
for α = α1 · · ·αk ∈ Ek, k ≥ 1, and sα = pv for

α = v ∈ E0.
(c) C∗(E) is AF if and only if E has no loops ([KPR]).
(d) C∗(E) ×γ T is always AF: The crossed product C∗(E) ×γ T is stably iso-

morphic to a graph C∗-algebra associated with a graph which has no loops
([KP]).

(e) Graph C∗-algebras are nuclear: C∗(E) is stably isomorphic to

(C∗(E)×γ T)×γ̂ T̂ ∼= AF ×γ̂ Z

by the Takesaki-Takai duality ([Ku, p.193]).
(f) C∗(E) is simple if and only if E is a cofinal graph with (L) (E is cofinal

if v ∈ E0 and α = α1α2 · · · is an infinite path there exists a finite path β

such that s(β) = v and r(β) = s(αi) for some i). Moreover, if C∗(E) is
simple then it is either AF (when there is no loops in E) or purely infinite
(there are loops in E). We refer the reader to [KR] for the definition of
purely infinite C∗-algebras.

(g) Let E be a locally finite directed graph with no sinks. Then C∗(E) is purely
infinite if and only if no quotient of C∗(E) contains an AF ideal, nor does
it contain a corner isomorphic to Mn(C(T)) for some n ∈ N ([Hj]).
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(h) The ideal structure of C∗(E) can be read from the graph itself ([BHRS]).
Particularly, if a locally finite graph E has (K), there is a lattice isomor-
phism between the ideals of C∗(E) and the lattice of saturated hereditary
subsets of E0 ([KPRR]).

(i) A C∗-algebra is of real rank zero (RR(A) = 0) if every non-zero hereditary
C∗-subalgebra of A contains an approximate identity of projections ([BP]).
It is known that RR(C∗(E)) = 0 if and only if E satisfies (K) ([JP1]).

(j) The only possible values of the stable rank of C∗(E) are 1, 2, or ∞ ([DHS]).
In particular, sr(C∗(E)) = 1 if and only if no loops in E has an exit ([JPS],
[DHS]).

3. Shift space and entropies

Let A be a finite set and let X ⊂ AN be a (one-sided) shift space with the shift
map σX . Then the entropy h(X) of X is defined by

h(X) = lim
n→∞

1
n

log |Wn(X)|,
where Wn(X) is the set of all words of length n that appear in a sequence of X

([LM, Definition 4.1.1] or [Kt, p.23]). If X 6= ∅ we have 0 ≤ h(X) < log |A| < ∞
since 1 ≤ |Wn(X)| ≤ |A|n. In particular, the full shift space Xn = AN, |A| = n,
has h(Xn) = log n. If X = ∅ then h(X) = −∞ by definition.

Let T : X → X be a continuous map on a compact space X. If U is an open
cover of X then so is T−1U . By N(U) we denote the number of sets in a finite
subcover of U with smallest cardinality. Then the entropy of T relative to U is given
by

htop(T,U) := lim
n→∞

1
n

log(N(∨n−1
i=0 T−iU)),

where U ∨V denotes the join of U and V, and the topological entropy of T is defined
by

htop(T ) = sup
U

htop(T,U),

where the supremum is taken over all the open covers (or equivalently, over all the
finite open covers) of X ([Wt, Chapter 7]).

Remark 3.1. Let E be a finite graph and XE be the one-sided shift space associated
with E.

(a) Let XE = {α = (αi) ∈ (E1)N | r(αi) = s(αi+1) for all i ∈ N} be the edge
shift space with the shift map σ = σE given by σ(α)i = αi+1 for each i ∈ N.
If there is an infinite path in E

htop(XE) = h(XE).

Otherwise XE = ∅ and so h(XE) = −∞ ([Wt, Theorem 7.13]).
(b) h(XE) = log λE = log r(AE), where λE is the Perron value of the edge

matrix AE of E and r(AE) is the spectral radius of AE (see [JP2], for
example).
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4. Voiculescu’s topological entropy of cp maps ΦE

Let π : A → B(H) be a faithful representation of a C∗-algebra A and let Pf(A)
be set of all finite subsets of A. Put

• CPA(π, A) = {(φ, ψ,B) | φ : A → B, ψ : B → B(H) are contractive
completely positive maps and dim B < ∞},

• rcp(π, ω, δ) = inf{rank(B) | (φ, ψ, B) ∈ CPA(π,A), ‖ψ ◦ φ(x) − π(x)‖ <

δ for all x ∈ ω}, where rank(B) denotes the dimension of a maximal abelian
subalgebra of B.

Since C∗(E) is nuclear (hence exact) and every exact C∗-algebra is nuclearly em-
beddable ([Kr]), for each ω ∈ Pf(C∗(E)) and δ > 0 the value rcp(π, ω, δ) is fi-
nite and moreover is independent of the choice of π ([Br], [BG]). Assuming that
C∗(E) ⊂ B(H) for a Hilbert space H we may write rcp(ω, δ) for rcp(π, ω, δ).

Definition 4.1. ([Br], [BG]) Let A ⊂ B(H) be an exact C∗-algebra and Φ : A → A

be a cp (completely positive) map. Then we define

ht(Φ, ω, δ) = lim sup
n→∞

1
n

log
(
rcp(ω ∪ Φ(ω) ∪ · · · ∪ Φn−1(ω), δ)

)
,

ht(Φ, ω) = sup
δ>0

ht(Φ, ω, δ),

ht(Φ) = sup
ω∈Pf(A)

ht(Φ, ω).

ht(Φ) is called the topological entropy of Φ.

Remark 4.1. (a) ([De]) Let T : X → X be a continuous map on a compact
metric space X. Then ht(T ∗) = htop(X, T ), where T ∗ : C(X) → C(X) is
the cp map given by T ∗(f) = f ◦ T, f ∈ C(X).

(b) Let α be an automorphism of a unital C∗-algebra A. Choda ([Ch2]) in-
troduced the C∗-dynamical entropy htφ(α) with respect to an α-invariant
state φ of A, and proved that hφ(α) ≤ htφ(α) ≤ ht(α), where hφ(α) is the
CNT-entropy.

(c) The following basic results are well known.
(i) If Φ : A → A is a cp map and θ : A → B is a C∗-isomorphism then

θΦθ−1 : B → B is also a cp map and

ht(Φ) = ht(θΦθ−1).

(ii) Let Ã be the unital C∗-algebra obtained by adjoining a unit. Let
Φ̃ : Ã → Ã be the extension of Φ. Then

ht(Φ̃) = ht(Φ).

(iii) Let Φ be a cp map on A. If A0 ⊂ A is a C∗-subalgebra of A such that
Φ(A0) ⊂ A0. Then

ht(Φ|A0) ≤ ht(Φ).
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Let E be a finite graph with the sinks S(E). Then the graph algebra C∗(E) =
C∗{se, pv} is unital with the unit

∑
v∈E0 pv. Consider the following cp maps ΦE , ΨE :

C∗(E) → C∗(E) given by

ΦE(x) =
∑

e∈E1

sexse
∗,

ΨE(x) = ΦE(x) +
∑

v∈S(E)

pvxpv.

The map ΨE is always unital while ΦE may not. We call ΦE the canonical cp map
of C∗(E).

Proposition 1. ([JP2]) Let E be a finite graph with the edge matrix AE. If E

contains an infinite path then

ht(ΨE) = log r(AE),

where r(AE) is the spectral radius of the edge matrix AE of E.

The inequality log r(AE) ≤ ht(ΨE) follows from Remark 3.1.(b) by applying
Remark 4.1.(c)(iii) to the ΨE-invariant commutative C∗-subalgebra DE of C∗(E)
that is isomorphic to C(XE) and ΦE |DE

corresponds to the shift map σXE
.

We can prove the following theorem using the above proposition.

Theorem 2. ([Ch1], [BG], [PWY], [JP2]) Let E be a finite graph. Then the
topological entropy of the cp map ΦE is

ht(ΦE) = log r(AE) = htop(XE).

Now let E be a locally finite infinite graph. Then it is known in [JP2] that the
map

ΦE : C∗(E) → C∗(E), ΦE(x) =
∑

e∈E1

sexse
∗, x ∈ C∗(E)

is a well defined contractive cp map. Hence we can think of its topological entropy
ht(ΦE). As in the case of finite graph, one might expect that htop(XE) is the lower
bound for ht(ΦE). But the locally compact shift space XE may not be compact,
hence htop(XE) is not defined and we need to consider a compactification of XE .
So let XE be the Gurevic’s compactification of XE ([Gu]).

Theorem 3. ([JP2]) Let E be a locally finite irreducible infinite graph. Then

htop(XE) = sup
E′

h(XE′) ≤ ht(ΦE),

where the supremum is taken over all the finite subgraphs of E.

The first equality in the theorem is proved in [Gu]. One can consider the one
point compactification X̃E of the locally compact space XE . It is easy to see that if
E is locally finite then X̃E is topologically conjugate to Gurevic’s compactification
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XE . Hence they have the same topological entropy, htop(X̃E) = htop(XE). Also
the topological entropy by Gurevic coincides with the growth rate of the number
of loops of length n from any fixed vertex to itself if the graph is irreducible.

Now let E be an irreducible infinite graph, and let A0 be the AF subalgebra
of C∗(E) generated by {sαs∗β | α, β ∈ E∗, |α| = |β|}. Then clearly DE ⊂ A0

and A0 is ΦE-invariant so that ht(ΦE |A0) ≤ ht(ΦE). Also an AF subalgebra
Av = C∗{sαs∗β | α, β ∈ E∗, |α| = |β|, r(α) = r(β) = v} of A0 is ΦE-invariant for
each v ∈ E0. Recall that the Salama’s block entropy of the shift space (XE , σE) is
given by lim supn→∞

1
n log |Bn(v)|, where Bn(v) is the set of all finite paths α with

|α| = n, s(α) = v. The entropy value does not depend on the choice of a vertex v if
E is irreducible. If B′

n(v) is the set of all finite paths α with r(α) = v, |α| = n, then
we can think of a variant of Salama’s entropy, that is, lim supn→∞

1
n log |B′

n(v)|.

Theorem 4. ([JP3]) Let E be a locally finite irreducible infinite graph and let
En(v) be the set of all finite paths α passing through v and |α| = n. Then

ht(ΦE |A0) ≤ lim sup
n→∞

1
n

log |En(v)|,

and lim supn→∞
1
n log |En(v)| is independent of the choice of v. Also we have

ht(ΦE |Av ) ≤ lim sup
n→∞

1
n

log |B′
n(v)|.

Remark 4.2. Theorem 4 implies that ht(ΦE) = ∞ in many cases. It would be
important to find an upper bound for ht(ΦE) or a better lower bound for ht(ΦE |A0)
than the Gurevic entropy. These efforts will be helpful for computing the entropy
ht(ΦE).
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