GRAPH C*-ALGEBRAS AND TOPOLOGICAL ENTROPY

JA A JEONG

ABSTRACT. Given a directed graph E, it is well known that there exists a universal C^* -algebra $C^*(E)$ generated by a Cuntz-Krieger E family. For example, Cuntz-Krieger algebras \mathcal{O}_A are graph C^* -algebras associated with finite graphs. \mathcal{O}_A was first introduced and studied as an invariant of the topological conjugacy class of the topological Markov shift (X_A, σ_A) ([CK]), and the map $\Phi_E: C^*(E) \to C^*(E)$ defined by

$$\Phi_E(x) = \sum_{e \in E^1} s_e x s_e^*$$

played an important role in that direction of research. Choda ([Ch1]) proved that for the Cunzt algebra \mathcal{O}_n the Voiculescu's topological entropy ([Vo]) becomes $ht(\Phi_n) = \log n$, which has been extended to Cuntz-Krieger algebras \mathcal{O}_A in [BG] and [PWY] when A is an (irreducible) finite matrix with no sinks. In this paper we discuss the Voiculescu's topological entropy $ht(\Phi_E)$ of the (completely positive) map Φ_E defined on a C^* -algebra $C^*(E)$ when E is an arbitrary directed graph ([JP2]). We also deal with some of other entropies like the (classical) topological entropy $h_{top}(X_E)$, Gurevic entropy, and a variant of the Salama's block entropy of the edge shift space of E.

1. Introduction

1.1. It is well known that for a directed graph E there exists a universal C^* -algebra $C^*(E)$ associated with E (see [KPR]). Recently the ideal structures, pure infiniteness conditions, and stability conditions of graph C^* -algebras have been obtained by many authors ([BHRS], [KPRR], [Hj], etc.). It is also known about when $C^*(E)$ has real rank zero in terms of loops in E ([JPS], [JP1]). More recently, the possible stable range for $C^*(E)$ has been obtained ([JPS], [DHS], [KPRR], [BHRS]).

This class of graph C^* -algebras includes the Cuntz-Krieger algebras \mathcal{O}_A . Briefly, if $A = (A_{ij})$ is an $n \times n$ $\{0,1\}$ -matrix the algebra \mathcal{O}_A is defined to be the universal C^* -algebra generated by n partial isometries $\{s_i \mid 1 \leq i \leq n\}$ with orthogonal range projections satisfying the relations:

$$s_i^* s_i = \sum_{j=1}^n A_{ij} \, s_j s_j^*,$$

and if E is the finite graph with the incidence matrix A then \mathcal{O}_A is the graph algebra $C^*(E)$. Besides the class of C^* -algebras arising from graphs, there have

²⁰⁰⁰ Mathematics Subject Classification. 46L05, 46L55.

JA A JEONG

42

been many generalizations of the Cuntz-Krieger algebras (for example, [EL], [Ma], [Pm] among others).

1.2. The Cuntz-Krieger algebras \mathcal{O}_A were introduced in [CK] to study the shift space induced by the $n \times n$ {0,1}-matrix A. Such a matrix A is used as a transition matrix in symbolic dynamics. Let σ_A be the subshift acting on the compact one-sided shift space X_A . Then it is proved in [CK] that the Cuntz-Krieger algebra \mathcal{O}_A is an invariant for the topological conjugacy class of σ_A . The positive linear map $\Phi_A: \mathcal{O}_A \to \mathcal{O}_A$ defined by

$$\Phi_A(x) = \sum_{i=1}^n s_i \, x \, s_i^*$$

played an important role in the study of the algebra \mathcal{O}_A . If D_A is the commutative C^* -subalgebra of \mathcal{O}_A generated by $\{\Phi_A^k(s_is_i^*) \mid 1 \leq i \leq n, k \geq 0\}$ then D_A is identified with $C(X_A)$ in such a way that $\Phi_A|_{D_A}$ corresponds to the endomorphism on $C(X_A)$ induced by the shift σ_A .

1.3. The map Φ_A on the algebra \mathcal{O}_A is in fact a completely positive (cp) map which is not necessarily a *-homomorphism, in general. Voiculescu [Vo] introduced the topological entropy $ht(\alpha)$ for an automorphism of a unital nuclear C^* -algebra A, and later the notion was extended to automorphisms on exact C^* -algebras by Brown [Br]. But as described in [BG], even for a cp map Φ on an exact C^* -algebra A one has the same definition of the topological entropy $ht(\Phi)$ simply by replacing α by Φ .

Let \mathcal{O}_n be the Cuntz algebra, that is, $\mathcal{O}_n = \mathcal{O}_A$ for the $n \times n$ matrix A with all entries equal to 1. Then \mathcal{O}_n is a simple unital purely infinite nuclear algebra on which $\Phi_n (= \Phi_A)$ becomes a *-endomorphism. In [Ch1] Choda computed the topological entropy of Φ_n showing that

$$ht(\Phi_n) = \log n$$
.

On the other hand, if E is a finite graph, then one can consider two entropies, that is, the block entropy $h(X_E) = \limsup_{n \to \infty} \frac{1}{n} \log |E^n|$ and the topological entropy $h_{top}(X_E)$ associated with the (compact) edge shift space (X_E, σ_E) , and then from [Wt, Theorem 7.13] we see that the two entropies coincide each other. Moreover it is easy to see that $h(X_E) = \log n = \log r(A_E)$ if E is the graph consisting of n simple loops at a single vertex (so that $C^*(E) \cong \mathcal{O}_n$) and $r(A_E)$ is the spectral radius of the edge matrix A_E of E. Thus for the Cuntz algebras \mathcal{O}_n , Choda's result means that

$$ht(\Phi_n) = \log n = \log r(A_E) = h(X_E) = h_{top}(X_E),$$

and this has been extended by Boca and Goldstein [BG] to a Cuntz-Krieger algebra \mathcal{O}_A when A is the edge matrix of a strongly connected finite graph E. More generally, the same equality $ht(\Phi_E) = \log r(A_E)$ is obtained for any finite graph E with no sinks in [PWY] where the full C^* -dynamical systems are deeply investigated.

If E is a finite graph possibly with sinks, the cp map $\Phi_E(=\Phi_{A_E})$ is not unital. We defined in [JP2] another cp map $\Psi_E: C^*(E) \to C^*(E)$ which is unital to prove that

$$ht(\Psi_E) = \log r(A_E),$$

and then using this fact we also proved that $ht(\Phi_E) = \log r(A_E)$.

1.4. Let E be an infinite graph and $C^*(E) = C^*\{p_v, s_e \mid v \in E^0, e \in E^1\}$ be its graph C^* -algebra. Then as in the case of finite graph one would think of the map $\Phi_E: C^*(E) \to C^*(E)$ given by

$$\Phi_E(x) = \sum_{e \in E^1} s_e x s_e^*$$

and its topological entropy $ht(\Phi_E)$. But we first need to prove that the sum converges and the map is a cp map. In [JP2], it is shown that if E is locally finite, that is, if every vertex receives and emits only finitely many edges, then Φ_E is a well defined contractive cp map. Thus the topological entropy $ht(\Phi_E)$ is defined. Another problem we meet in dealing with the edge shift space X_E is that it is not compact any more, and so $h_{top}(X_E)$ is not given. Nevertheless, if we use Gurevic's compactification \overline{X}_E ([Gu]) the following inequality can be shown ([JP2]);

$$h_{top}(\overline{X}_E) \le ht(\Phi_E),$$

whenever E is a locally finite irreducible infinite graph. In fact, the left hand side is equal to $\sup_{E'} h_{top}(X_{E'})$, where the supremum is taken over the set of all finite subgraphs E' of E ([Gu]). The inequality is proved by finding a commutative C^* -subalgebra D_E of $C^*(E)$ such that $\Phi_E(D_E) \subseteq D_E$ and $h_{top}(\overline{X}_E) = ht(\Phi_E|_{D_E})$.

Finally we consider the topological entropy $ht(\Phi_E|_{\mathcal{A}})$ of the map Φ_E restricted to the AF subalgebra \mathcal{A}_0 which is invariant under Φ_E and $D_E \subset \mathcal{A}$. It is proved in [JP3] that

$$ht(\Phi_E|_{\mathcal{A}_0}) \le \limsup_{n \to \infty} \frac{1}{n} \log |E^n(v)|,$$

where $E^n(v)$ denotes the set of all finite paths with length n passing through the vertex v. Here the value $\limsup_{n\to\infty} \frac{1}{n}\log |E^n(v)|$ does not depend on the choice of a vertex v if E is irreducible.

2. Graphs and graph C^* -algebras

Let $E = (E^0, E^1, r, s)$ be a directed graph (or simply a graph) with a countable vertex and edge sets E^0 and E^1 , where $r, s : E^1 \to E^0$ are the range and source maps. By $\mathcal{S}(E)$ we denote the set of all sinks $v(s^{-1}(v) = \emptyset)$ of E. If a finite sequence $\alpha = \alpha_1 \alpha_2 \cdots \alpha_n$ of edges satisfies $r(\alpha_i) = s(\alpha_{i+1})$ for each $i = 1, \ldots, n-1, \alpha$ is called a (finite) path of length $|\alpha| = n$ with the range $r(\alpha) = r(\alpha_n)$ and the source $s(\alpha) = s(\alpha_1)$. E^n will be the set of all finite paths of length n, and we put $E^* = \bigcup_{n \geq 0} E^n$ (regarding each vertex as a finite path of length zero). A path α ($|\alpha| > 0$) with $s(\alpha) = r(\alpha)$ is called a loop.

A graph E is said to have property (L) if every loop has an exit, and (K) if there are at least two distinct loops at v whenever v lies on a loop.

For a graph E, a family $\{s_e, p_v \mid e \in E^1, v \in E^0\}$ of partial isometries s_e and mutually orthogonal projections p_v is called a *Cuntz-Krieger E-family* if it satisfies

the following relations:

$$s_e^* s_e = p_{r(e)}, \quad s_e s_e^* \le p_{s(e)},$$

$$p_v = \sum_{s(e)=v} s_e s_e^* \quad \text{if} \quad 0 < |s^{-1}(v)| < \infty.$$

It is known (see [BHRS], [KPR] for example) that there exists a universal C^* -algebra $C^*(E)$ generated by a Cuntz-Krieger E-family $\{s_e, p_v\}$. We call $C^*(E)$ the graph C^* -algebra associated with E. By universality there is the gauge action $\gamma: \mathbb{T} \to Aut(C^*(E))$ given by

$$\gamma_z(p_v) = p_v$$
 and $\gamma_z(s_e) = zs_e$.

If a row finite graph E satisfies (L) any two Cuntz-Krieger E-families of non-zero elements give rise to the isomorphic C^* -algebra ([KPR]), which is called the uniqueness theorem of graph algebras. Also if E is an arbitrary graph and $\{S_e, P_v \mid e \in E^1, v \in E^0\} \subset B(H)$ is a Cuntz-Krieger E-family with an action $\beta : \mathbb{T} \to Aut(C^*(S_e, P_v))$ such that $\beta_z \circ \pi = \pi \circ \gamma_z$ for $z \in \mathbb{T}$ ($\pi : C^*(E) \to C^*(S_e, P_v)$) is the *-homomorphism such that $s_e \mapsto S_e$ and $p_v \mapsto P_v$, such a homomorphism π exists by universality of the graph algebra) then π is in fact an isomorphism ([BHRS]).

 \mathcal{E} From definition it follows immediately that all graph algebras are separable since we consider graphs E with countable vertices and edges (see (b) below). Moreover the following useful and interesting facts are known for graph algebras.

- (a) $C^*(E)$ is unital if and only E has finitely many vertices.
- (b) The linear span of the set $\{s_{\alpha}s_{\beta}^* \mid \alpha, \beta \in E^*\}$ is norm dense in $C^*(E)$, where $s_{\alpha} = s_{\alpha_1} \cdots s_{\alpha_k}$ for $\alpha = \alpha_1 \cdots \alpha_k \in E^k$, $k \geq 1$, and $s_{\alpha} = p_v$ for $\alpha = v \in E^0$.
- (c) $C^*(E)$ is AF if and only if E has no loops ([KPR]).
- (d) $C^*(E) \times_{\gamma} \mathbb{T}$ is always AF: The crossed product $C^*(E) \times_{\gamma} \mathbb{T}$ is stably isomorphic to a graph C^* -algebra associated with a graph which has no loops ([KP]).
- (e) Graph C^* -algebras are nuclear: $C^*(E)$ is stably isomorphic to

$$(C^*(E) \times_{\gamma} \mathbb{T}) \times_{\hat{\gamma}} \hat{\mathbb{T}} \cong AF \times_{\hat{\gamma}} \mathbb{Z}$$

by the Takesaki-Takai duality ([Ku, p.193]).

- (f) $C^*(E)$ is simple if and only if E is a cofinal graph with (L) (E is cofinal if $v \in E^0$ and $\alpha = \alpha_1 \alpha_2 \cdots$ is an infinite path there exists a finite path β such that $s(\beta) = v$ and $r(\beta) = s(\alpha_i)$ for some i). Moreover, if $C^*(E)$ is simple then it is either AF (when there is no loops in E) or purely infinite (there are loops in E). We refer the reader to [KR] for the definition of purely infinite C^* -algebras.
- (g) Let E be a locally finite directed graph with no sinks. Then $C^*(E)$ is purely infinite if and only if no quotient of $C^*(E)$ contains an AF ideal, nor does it contain a corner isomorphic to $M_n(C(\mathbb{T}))$ for some $n \in \mathbb{N}$ ([Hj]).

- (h) The ideal structure of $C^*(E)$ can be read from the graph itself ([BHRS]). Particularly, if a locally finite graph E has (K), there is a lattice isomorphism between the ideals of $C^*(E)$ and the lattice of saturated hereditary subsets of E^0 ([KPRR]).
- (i) A C^* -algebra is of real rank zero (RR(A) = 0) if every non-zero hereditary C^* -subalgebra of A contains an approximate identity of projections ([BP]). It is known that $RR(C^*(E)) = 0$ if and only if E satisfies (K) ([JP1]).
- (j) The only possible values of the stable rank of $C^*(E)$ are 1, 2, or ∞ ([DHS]). In particular, $sr(C^*(E)) = 1$ if and only if no loops in E has an exit ([JPS], [DHS]).

3. Shift space and entropies

Let \mathcal{A} be a finite set and let $X \subset \mathcal{A}^{\mathbb{N}}$ be a (one-sided) *shift space* with the shift map σ_X . Then the *entropy* h(X) of X is defined by

$$h(X) = \lim_{n \to \infty} \frac{1}{n} \log |W_n(X)|,$$

where $W_n(X)$ is the set of all words of length n that appear in a sequence of X ([LM, Definition 4.1.1] or [Kt, p.23]). If $X \neq \emptyset$ we have $0 \leq h(X) < \log |\mathcal{A}| < \infty$ since $1 \leq |W_n(X)| \leq |\mathcal{A}|^n$. In particular, the full shift space $X_n = \mathcal{A}^{\mathbb{N}}$, $|\mathcal{A}| = n$, has $h(X_n) = \log n$. If $X = \emptyset$ then $h(X) = -\infty$ by definition.

Let $T: X \to X$ be a continuous map on a compact space X. If \mathcal{U} is an open cover of X then so is $T^{-1}\mathcal{U}$. By $N(\mathcal{U})$ we denote the number of sets in a finite subcover of \mathcal{U} with smallest cardinality. Then the *entropy of T relative* to \mathcal{U} is given by

$$h_{top}(T,\mathcal{U}) := \lim_{n \to \infty} \frac{1}{n} \log(N(\vee_{i=0}^{n-1} T^{-i}\mathcal{U})),$$

where $\mathcal{U} \vee \mathcal{V}$ denotes the join of \mathcal{U} and \mathcal{V} , and the topological entropy of T is defined by

$$h_{top}(T) = \sup_{\mathcal{U}} h_{top}(T, \mathcal{U}),$$

where the supremum is taken over all the open covers (or equivalently, over all the finite open covers) of X ([Wt, Chapter 7]).

Remark 3.1. Let E be a finite graph and X_E be the one-sided shift space associated with E.

(a) Let $X_E = \{\alpha = (\alpha_i) \in (E^1)^{\mathbb{N}} \mid r(\alpha_i) = s(\alpha_{i+1}) \text{ for all } i \in \mathbb{N} \}$ be the edge shift space with the shift map $\sigma = \sigma_E$ given by $\sigma(\alpha)_i = \alpha_{i+1}$ for each $i \in \mathbb{N}$. If there is an infinite path in E

$$h_{top}(X_E) = h(X_E).$$

Otherwise $X_E = \emptyset$ and so $h(X_E) = -\infty$ ([Wt, Theorem 7.13]).

(b) $h(X_E) = \log \lambda_E = \log r(A_E)$, where λ_E is the Perron value of the edge matrix A_E of E and $r(A_E)$ is the spectral radius of A_E (see [JP2], for example).

JA A JEONG

46

4. Voiculescu's topological entropy of CP maps Φ_E

Let $\pi: A \to B(H)$ be a faithful representation of a C^* -algebra A and let Pf(A) be set of all finite subsets of A. Put

- $CPA(\pi, A) = \{(\phi, \psi, B) \mid \phi : A \to B, \psi : B \to B(H) \text{ are contractive completely positive maps and } \dim B < \infty\},$
- $rcp(\pi, \omega, \delta) = \inf\{rank(B) \mid (\phi, \psi, B) \in CPA(\pi, A), \|\psi \circ \phi(x) \pi(x)\| < \delta \text{ for all } x \in \omega\}$, where rank(B) denotes the dimension of a maximal abelian subalgebra of B.

Since $C^*(E)$ is nuclear (hence exact) and every exact C^* -algebra is nuclearly embeddable ([Kr]), for each $\omega \in Pf(C^*(E))$ and $\delta > 0$ the value $rcp(\pi, \omega, \delta)$ is finite and moreover is independent of the choice of π ([Br], [BG]). Assuming that $C^*(E) \subset B(H)$ for a Hilbert space H we may write $rcp(\omega, \delta)$ for $rcp(\pi, \omega, \delta)$.

Definition 4.1. ([Br], [BG]) Let $A \subset B(H)$ be an exact C^* -algebra and $\Phi : A \to A$ be a cp (completely positive) map. Then we define

$$ht(\Phi, \omega, \delta) = \limsup_{n \to \infty} \frac{1}{n} \log \left(rcp(\omega \cup \Phi(\omega) \cup \dots \cup \Phi^{n-1}(\omega), \delta) \right),$$

$$ht(\Phi, \omega) = \sup_{\delta > 0} ht(\Phi, \omega, \delta),$$

$$ht(\Phi) = \sup_{\omega \in Pf(A)} ht(\Phi, \omega).$$

 $ht(\Phi)$ is called the topological entropy of Φ .

- Remark 4.1. (a) ([De]) Let $T: X \to X$ be a continuous map on a compact metric space X. Then $ht(T^*) = h_{top}(X,T)$, where $T^*: C(X) \to C(X)$ is the cp map given by $T^*(f) = f \circ T$, $f \in C(X)$.
 - (b) Let α be an automorphism of a unital C^* -algebra A. Choda ([Ch2]) introduced the C^* -dynamical entropy $ht_{\phi}(\alpha)$ with respect to an α -invariant state ϕ of A, and proved that $h_{\phi}(\alpha) \leq ht_{\phi}(\alpha) \leq ht(\alpha)$, where $h_{\phi}(\alpha)$ is the CNT-entropy.
 - (c) The following basic results are well known.
 - (i) If $\Phi:A\to A$ is a cp map and $\theta:A\to B$ is a C^* -isomorphism then $\theta\Phi\theta^{-1}:B\to B$ is also a cp map and

$$ht(\Phi) = ht(\theta \Phi \theta^{-1}).$$

(ii) Let \tilde{A} be the unital C^* -algebra obtained by adjoining a unit. Let $\tilde{\Phi}: \tilde{A} \to \tilde{A}$ be the extension of Φ . Then

$$ht(\tilde{\Phi}) = ht(\Phi).$$

(iii) Let Φ be a cp map on A. If $A_0 \subset A$ is a C^* -subalgebra of A such that $\Phi(A_0) \subset A_0$. Then

$$ht(\Phi|_{A_0}) \leq ht(\Phi).$$

Let E be a finite graph with the sinks $\mathcal{S}(E)$. Then the graph algebra $C^*(E) = C^*\{s_e, p_v\}$ is unital with the unit $\sum_{v \in E^0} p_v$. Consider the following cp maps $\Phi_E, \Psi_E : C^*(E) \to C^*(E)$ given by

$$\Phi_E(x) = \sum_{e \in E^1} s_e x s_e^*,$$

$$\Psi_E(x) = \Phi_E(x) + \sum_{v \in \mathcal{S}(E)} p_v x p_v.$$

The map Ψ_E is always unital while Φ_E may not. We call Φ_E the canonical cp map of $C^*(E)$.

Proposition 1. ([JP2]) Let E be a finite graph with the edge matrix A_E . If E contains an infinite path then

$$ht(\Psi_E) = \log r(A_E),$$

where $r(A_E)$ is the spectral radius of the edge matrix A_E of E.

The inequality $\log r(A_E) \leq ht(\Psi_E)$ follows from Remark 3.1.(b) by applying Remark 4.1.(c)(iii) to the Ψ_E -invariant commutative C^* -subalgebra D_E of $C^*(E)$ that is isomorphic to $C(X_E)$ and $\Phi_E|_{D_E}$ corresponds to the shift map σ_{X_E} .

We can prove the following theorem using the above proposition.

Theorem 2. ([Ch1], [BG], [PWY], [JP2]) Let E be a finite graph. Then the topological entropy of the cp map Φ_E is

$$ht(\Phi_E) = \log r(A_E) = h_{top}(X_E).$$

Now let E be a locally finite infinite graph. Then it is known in [JP2] that the map

$$\Phi_E: C^*(E) \to C^*(E), \ \Phi_E(x) = \sum_{e \in E^1} s_e x s_e^*, \ x \in C^*(E)$$

is a well defined contractive cp map. Hence we can think of its topological entropy $ht(\Phi_E)$. As in the case of finite graph, one might expect that $h_{top}(X_E)$ is the lower bound for $ht(\Phi_E)$. But the locally compact shift space X_E may not be compact, hence $h_{top}(X_E)$ is not defined and we need to consider a compactification of X_E . So let \overline{X}_E be the Gurevic's compactification of X_E ([Gu]).

Theorem 3. ([JP2]) Let E be a locally finite irreducible infinite graph. Then

$$h_{top}(\overline{X}_E) = \sup_{E'} h(X_{E'}) \le ht(\Phi_E),$$

where the supremum is taken over all the finite subgraphs of E.

The first equality in the theorem is proved in [Gu]. One can consider the one point compactification \widetilde{X}_E of the locally compact space X_E . It is easy to see that if E is locally finite then \widetilde{X}_E is topologically conjugate to Gurevic's compactification

48 JA A JEONG

 \overline{X}_E . Hence they have the same topological entropy, $h_{top}(\widetilde{X}_E) = h_{top}(\overline{X}_E)$. Also the topological entropy by Gurevic coincides with the growth rate of the number of loops of length n from any fixed vertex to itself if the graph is irreducible.

Now let E be an irreducible infinite graph, and let \mathcal{A}_0 be the AF subalgebra of $C^*(E)$ generated by $\{s_{\alpha}s_{\beta}^* \mid \alpha, \beta \in E^*, |\alpha| = |\beta|\}$. Then clearly $D_E \subset \mathcal{A}_0$ and \mathcal{A}_0 is Φ_E -invariant so that $ht(\Phi_E|_{\mathcal{A}_0}) \leq ht(\Phi_E)$. Also an AF subalgebra $\mathcal{A}_v = C^*\{s_{\alpha}s_{\beta}^* \mid \alpha, \beta \in E^*, |\alpha| = |\beta|, r(\alpha) = r(\beta) = v\}$ of \mathcal{A}_0 is Φ_E -invariant for each $v \in E^0$. Recall that the Salama's block entropy of the shift space (X_E, σ_E) is given by $\limsup_{n \to \infty} \frac{1}{n} \log |B_n(v)|$, where $B^n(v)$ is the set of all finite paths α with $|\alpha| = n$, $s(\alpha) = v$. The entropy value does not depend on the choice of a vertex v if E is irreducible. If $B'_n(v)$ is the set of all finite paths α with $r(\alpha) = v$, $|\alpha| = n$, then we can think of a variant of Salama's entropy, that is, $\limsup_{n \to \infty} \frac{1}{n} \log |B'_n(v)|$.

Theorem 4. ([JP3]) Let E be a locally finite irreducible infinite graph and let $E^n(v)$ be the set of all finite paths α passing through v and $|\alpha| = n$. Then

$$ht(\Phi_E|_{\mathcal{A}_0}) \le \limsup_{n \to \infty} \frac{1}{n} \log |E^n(v)|,$$

and $\limsup_{n\to\infty} \frac{1}{n} \log |E^n(v)|$ is independent of the choice of v. Also we have

$$ht(\Phi_E|_{\mathcal{A}_v}) \le \limsup_{n \to \infty} \frac{1}{n} \log |B'_n(v)|.$$

Remark 4.2. Theorem 4 implies that $ht(\Phi_E) = \infty$ in many cases. It would be important to find an upper bound for $ht(\Phi_E)$ or a better lower bound for $ht(\Phi_E|_{\mathcal{A}_0})$ than the Gurevic entropy. These efforts will be helpful for computing the entropy $ht(\Phi_E)$.

REFERENCES

[AKM] R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309–319.

[BG] Florin P. Boca and Paul Goldstein, Topological entropy for the canonical endomorphism of Cuntz-Krieger algebras, Bull. London Math. Soc. 32 (2000), 345–352.

[BHRS] T. Bates, J. H. Hong, I. Raeburn and W. Szymanski, *The ideal structure of the C*-algebras of infinite graphs*, Illinois J. Math., to appear.

[Br] N. P. Brown, Topological entropy in exact C*-algebras, Math. Annalen, 314 (1999), 347-367.

[BP] L. G. Brown and G. K. Pedersen, C*-algebras of real rank zero, J. Funct. Anal. 99 (1991), no. 1, 131–149.

[Ch1] M. Choda, Endomorphisms of shift type (entropy for endomorphisms of Cuntz algebras), Operator Algebras and Quantum Field Theory (Rome, 1996), 469–475, International Press, Cambridge, MA.

[Ch2] M. Choda, Dynamical entropy for automorphisms of exact C*-algebras. J. Funct. Anal. 198 (2003), no. 2, 481–498.

[Cu] J. Cuntz, Simple C*-algebras generated by isometries, Comm. Math. Phys. 57 (1977), 173– 185.

[CK] J. Cuntz and W. Krieger, A class of C*-algebras and topological Markov chains, Invent. Math. 56 (1980), 251–268.

[De] V. Deaconu, Entropy estimates for some C*-endomorphisms, Proc. Amer. Math. Soc. 127 (1999), no. 12, 3653–3658.

- [DHS] K. Deicke, J. H. Hong, and W. Szymanski, Stable rank of graph algebras. Type I graph algebras and their limits, arXiv:math.OA/0211144v1 Nov 2002.
- [EL] R. Exel and M. Laca, Cuntz-Krieger algebras for infinite matrices, J. Reine Angew. Math. 512 (1999), 119–172.
- [Gu] B. M. Gurevic, Topological entropy of enumerable Markov chains, Dokl. Akad. Nauk SSSR 187 (1969), 216–226. Soviet Math. Dokl. 10 (1969), 911–915.
- [Hj] J. Hjelmborg, Purely infinite and stable C*-algebras of graphs and dynamical systems. Ergodic Theory Dynam. Systems 21 (2001), no. 6, 1789–1808.
- [JP1] J. A Jeong and G. H Park, Graph C*-algebras with real rank zero, J. Func. Anal. 188 (2002), 216-226.
- [JP2] J. A Jeong and G. H Park, Topological entropy for the canonical completely positive maps of graph C*-algebras, preprint.
- [JP3] J. A Jeong and G. H Park, in preparation.
- [JPS] J. A Jeong, G. H Park, and D. Y Shin, Stable rank and real rank of graph C*-algebras, Pacific J. Math. 200 (2001), 331-343.
- [Kr] E. Kirchberg, On subalgebras of the CAR-algebra, J. Funct. Anal. 129 (1995), no. 1, 35-63.
- [KR] E. Kirchberg and M. Rordam Non-simple purely infinite C*-algebras, Amer. J. Math. 122 (2000), no. 3, 637–666.
- [Kt] B. P. Kitchens, Symbolic Dynamics, Springer 1998.
- [Ku] A. Kumjian, Notes on C*-algebras of graphs, Contemporary Math. 228, Operator Algebras and Operator Theory, 1998, AMS.
- [KP] A. Kumjian and D. Pask, C*-algebras of directed graphs and group actions, Ergodic Theory Dynam. Systems.
- [KPR] A. Kumjian, D. Pask, and I. Raeburn, Cuntz-Krieger algebras of directed graphs, Pacific J. Math. 184 (1998), 161–174.
- [KPRR] A. Kumjian, D. Pask, I. Raeburn, and J. Renault, Graphs, Groupoids, and Cuntz-Krieger algebras, J. Funct. Anal. 144 (1997), 505-541.
- [LM] D. Lind and B. Marcus, An introduction to symbolic dynamics and coding, Cambridge University Press 1995.
- [Ma] K. Matsumoto, On C*-algebras associated with subshifts, Internat. J. Math. 8 (1997), 357-374.
- [PWY] C. Pinzari, Y. Watatani, and K. Yonetani, KMS states, entropy and the variational principle in full C*-dynamical systems, Commun. Math. Phys. 213 (2000), 331-379.
- [Pm] M. Pimsner, A class of C*-algebras generalizing both Cuntz-Krieger algebras and crossed products by Z, in Free probability theory (D. Voiculescu, Ed.), 189-212, Fields Institute Communications 12, Amer. Math. Soc.
- [Vo] D. Voiculescu, Dynamical approximation entropies and topological entropy in operator algebras, Comm. Math. Phys. 170 (1995), 249–281.
- [Wt] P. Walters, An introduction to ergodic theory, GTM 79, Springer 1982.

School of Mathematical Sciences, Seoul National University, Seoul, 151–742, Korea, email: jajeong@math.snu.ac.kr