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QUASISIMILARITY OF NON-HYPONORMAL OPERATORS

IN HO JEON

Abstract. In this article we give informal accounts of some recent results on
quasisimilarity of various non-hyponormal operators.

1. Introduction

Let H and K be infinite dimensional complex Hilbert spaces and let L(H, K)
denote the set of bounded linear operators from H to K. If H = K, we write L(H)
in place of L(H, K).

Recall ([3],[6],[13],[14],[21],[28]) that an operator X ∈ L(H) is called a quasi-
affinity if X is injective and has dense range. For T1 ∈ L(H1) and T2 ∈ L(H2), if
there exist quasiaffinities X ∈ L(H2,H1) and Y ∈ L(H1,H2) such that

T1X = XT2 and Y T1 = T2Y,

then we say that T1 and T2 are quasisimilar.
Quasisimilarity was first introduced by Sz. Nagy and Foias([20]) in their theory

of infinite dimensional analogue of the Jordan form for certain classes of contrac-
tions as a means of studying their invariant subspace structures. It replaces the
familiar notion of similarity which is the appropreate equivalence relation to use
with finite dimensional Jordan forms. In finite dimensional spaces quasisimilarity is
the same thing as similarity, but in infinite dimensional spaces it is a much weaker
relation. It is well known that simlarity of operators preserve compactness, cyclic-
ity, algebraicity, and the spectral picture(i.e., the spectrum, essential spectrum, and
index function), and that similar operators have isomorphic lattices of invariant and
hyperinvariant subspaces.

In general quasisimilarity preserve nothing mentioned above except the point
spectrum and hyperinvariant subspaces. Actually, Hoover([13]) give an easy exam-
ple that quasisimilarity need not preserve the spectrum and compactness. However,
in special classes of operators quasisimilarity may preserve many things. Actually,
it is well known that quasisimilar p-hyponormal operators have the same spectral
picture([7],[30]), which is an extension of earlier well-known results(e.g., [3],[6],[21]).

On the other hand, Douglas ([5]) proved that quasisimilar normal operators are
unitarily equivalent. Hoover([13]) proved that quasisimilar isometries are unitarily
equivalent. Conway ([4]) proved that the normal parts of quasisimilar subnormal
operators are unitarily equivalent and gave an example showing that the pure parts
of quasisimilar subnormal operators need not be quasisimilar. This result was ex-
tended by Williams([28]) to the more general case of dominant operators. Recently,
Conway’s result also has been extended to another general interesting classes of
non-hyponormal operators. The aim of this article is to survey these recent results.
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2. Some classes of non-hyponormal operators

As an easy extension of normal operators, hyponormal operators have been stud-
ied by many mathematicians. Though there are many unsolved interesting prob-
lems for hyponormal operators(e.g., the invariant subspace problem), one of recent
trends in operator theory is studying natural extensions of hyponormal operators.
So we introduce some these non-hyponormal operators in this section.

Löwner-Heinz inequality(to be mentioned in the section 3) give an natural exten-
sion of hyponormal operators. Recall ([1],[6],[10],[14]) that an operator T ∈ L(H)
is called p-hyponormal if

(T ∗T )p − (TT ∗)p ≥ 0 for p ∈ (0, 1].

We can notice that T is hyponormal if p = 1 and that a p-hyponormal operator
is also q-hyponormal for every 0 < q ≤ p from Löwner-Heinz inequality. Also, an
operator T is said to be log-hyponormal if T is invertible and satisfies the following
inequality

log(T ∗T ) ≥ log(TT ∗).

It is known that invertible p-hyponormal operators are log-hyponormal and the
converse is not true ([23]). But it is very interesting that we may regard log-
hyponormal operators as 0-hyponormal operators ([23]).

Also, recall ([17],[19],[25]) that T ∈ L(H) is called p-quasihyponormal if

T ∗{(T ∗T )p − (TT ∗)p}T ≥ 0.

If p = 1, T is quasihyponormal ([2]). In [25], it is well known that if an operator
T ∈ L(H) is p-quasihyponormal for some 0 < p ≤ 1 then

T =
(

T1 T2

0 0

)
on H = R(T )⊕N(T ∗),

where T1 = T |
R(T )

is p-hyponormal which satisfies (T1
∗T1)p ≥ (T1T1

∗ + T2T2
∗)p.

Thus we easily see that if T is p-quasihyponormal with dense range then T is just p-
hyponormal (for details, see [25]). So p-hyponormal operators are p-quasihyponormal.

An operator T is paranormal if

||Tx||2 ≤ ||T 2x||||x|| for all x ∈ H.

If arrows below mean implications we can notice that for p ∈ (0, 1]

P − hyponormal → P − quasihyponormal
↗ ↘

Hyponormal Paranormal.
↗

Invertible p− hyponormal → Log-hyponormal
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There have been well known another classes of operators properly containing
hyponormal operators. Operators belonging to these classes are not paranormal
unlike the former. Recall ([27], [28]) that an operator T ∈ L(H) is said to be
dominant if for each λ ∈ C there exists a positive number Mλ such that

(T − λ)(T − λ)∗ ≤ Mλ(T − λ)∗(T − λ).

If the constants Mλ are bounded by a positive number M , then T is said to be M -
hyponormal. Also, we may note that if T is 1-hyponormal, then T is hyponormal.
Evidently, we see that

Hyponormal → M − hyponormal → Dominant

3. Main tools

One of our major tools comes from Aluthge transform (cf. [1],[6],[7],[14],[15])
of a p-hyponormal operator. We completely introduce a refinement of Aluthge
transform because this tool will be used in proof of lemmas listed in this article.

We decompose a p-hyponormal operator T into its normal and pure parts by
T = T1 ⊕ T2 with respect to a decomposition H = H1 ⊕H2. Then it is well known
T2 is also p-hyponormal. Letting T2 have the polar decomposition T2 = U |T2|,
we consider its Aluthge transform T̂2 = |T2|1/2U |T2|1/2. Again, let T̂2 = V |T̂2|,
and define T̃2 = |T̂2|1/2V |T̂2|1/2. Using the Furuta’s inequality([9]), Aluthge([1,
Theorem 1,2]) showed the Aluthge transform T̂2 of T2 is semi-hyponormal and
the second Aluthge transform T̃2 of T2 is hyponormal. (Though it was proved in
the special case in which the partial isometry in the polar decomposition of a p-
hyponormal operator is unitary, the proof can be made to work in general case.)
Letting W = |T̂2|1/2|T2|1/2, by Corollary 4 in [6] we can see that W is a quasiaffinity
such that T̃2W = WT2. Since T̃2 is hyponormal, if we set X := IH1 ⊕ W and
T̃ := T1 ⊕ T̃2, then X is a quasiaffinity such that T̃X = XT where T̃ is also
hyponormal. Thus we have

Proposition A. ([7]) If T is p-hyponormal, then there exists a hyponormal
operator A and a quasi-affinity X such that AX = XT .

Our another tools are two famous operator inequalities.

Löwner-Heinz inequality ([10]). If B ≥ A ≥ 0, then Bα ≥ Aα ≥ 0 for α ∈
(0, 1].

Hansen’s inequality ([12]). If A, B ∈ L(H) satisfy A ≥ 0 and ||B|| ≤ 1, then
(B∗AB)δ ≥ B∗AδB for all δ ∈ (0, 1].

These inequalities are essential tools in proofs of structural properties for p-
hyponormal, p-quasihyponormal, and log-hyponormal operators.

4. Results
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First, we consider some structural properties of operators.

A restriction invariant property. Let an operator T ∈ L(H) satisfy an
property P and let M be an invariant subspace for T . Then the restriction of T to
M, denoted by T |M, also satisfies P .

As in the case of hyponormal operators, it is well known that if T ∈ L(H) is a
p-hyponormal operator, then the restriction T |M of T to an invariant subspace M
is p-hyponormal ([24, Lemma 4]). This restriction invariant property also holds for
p-quasihyponormal operators ([17]). In the case of log-hyponormal operators, we
need additional invertibility assumption for the restriction of each log-hyponormal
operator to its invariant subspace ([18]). For giving proofs of these facts, we must
use inequalities mentioned above.

The following property is well known for hyponormal operators and more gen-
erally dominant operators ([22]).

A reducing property. Let M be an invariant subspace for an operator T ∈
L(H). If the restriction of T to M is normal, then M reduces T .

This property holds for p-hyponormal operators ([15]). But we need additional
injectivity assumptions for restrictions of p-quasihyponormal operators to their in-
variant subspaces ([17]). Actually, this assumption is essential because the restric-
tion of a p-quasihyponormal operator to its kernel is trivially normal. But the
kernel of p-quasihyponormal operator is not always a reducing subspace for it. On
the other hand, for log-hyponormal operators, we have the following result enough
to prove our main result.

Proposition B ([18]). Let T ∈ L(H) be log-hyponormal. Then T = T1 ⊕ T2 on
H = H1 ⊕H2 where T1 is normal and T2 is pure and log-hyponormal, i.e., T2 has
no invariant subspace M such that T2|M is normal.

Let H denote one of the classes of p-hyponormal, log-hyponormal, and injective
p-quasihyponormal operators, respectively. Then we have the following result for
H-operators (cf., [15],[17],[18]).

Proposition C. Let T1 ∈ L(H1) be a H-operator and let T2 ∈ L(H2) be a
normal operator. If there exists an operator X ∈ L(H2,H1) with dense range such
that T1X = XT2, then T1 is normal.

The following result proved in [28] is also essential to prove our main result.

Willams’s lemma. Let Ni ∈ L(Hi) be normal for each i = 1, 2. If X ∈
L(H2,H1) and Y ∈ L(H1,H2) are injective such that N1X = XN2 and Y N1 =
N2Y , then N1 and N2 are unitarily equivalent.

We are ready to write our main result (cf., [15],[17],[18]).

Theorem. Let Ti ∈ L(Hi)(i = 1, 2) be H-operators such that T1 and T2 are
quasisimilar and let Ti = Ni ⊕ Vi on Hi = Hi1 ⊕ Hi2, where Ni and Vi are the
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normal and pure parts of Ti, respectively. Then N1 and N2 are unitarily equivalent
and there exist X∗ ∈ L(H22,H12) and Y∗ ∈ L(H12,H22) with dense ranges such
that V1X∗ = X∗V2 and Y∗V1 = V2Y∗

From this theorem we have very important result which has been open question
after Clary’ result([3]).

Corollary ([7],[17]). Let T1 ∈ L(H1) and T2 ∈ L(H2) be H-operators. If T1 and
T2 are quasisimilar then they have same spectra and essential spectra.

Now we conclude this article with some problems. To do so, we introduce more
general non-hyponormal operators than operators mentioned above.

Recently, Furuta-Ito-Yamazaki ([11]) have defined an interesting class of Hilbert
space operators. An operator A ∈ L(H) is said to belong to Class A if A satisfies
an absolute value condition |A2| ≥ |A|2. In the following we denote “Class A” by
simply A. In [11], it is shown that A stands in the middle of classes of p-hyponormal
and paranormal operators. More explicitly, we have the following inclusions:

P − quasihyponormal
↗ ↘

P − hyponormal Paranormal.
↗

Log-hyponormal → A

Readers who see more informations for A-operators are refered to [10],[16],[26].

Problem. Does an analogue of Theorem for A-operators holds?

To approach this problem on the lines of arguments above, we may first consider
supplementary problems;

1. Let T ∈ A and M be an invariant subspace of T . Does M reduce T when
T |M is normal ?

2. Let T1 ∈ L(H1) be a A-operator and let T2 ∈ L(H2) be a normal operator.
Is T1 normal if there exists an injective operator X ∈ L(H2,H1) with dense range
such that T1X = XT2 ?
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