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ON THE ALEXANDER POLYNOMIALS OF PERIODIC LINKS
AND RELATED TOPICS

SANG YOUL LEE

Abstract. In this article we give a survey of the results that are known on

the Alexander polynomials of periodic knots and links in S3 and some related

topics.

1. Introduction

A link ` in S3 is said to have period n(n ≥ 2) if there is an n-periodic homeomor-
phism φ from S3 onto itself such that ` is invariant under φ and the fixed point set
f of the Zn-action induced by φ is homeomorphic to a 1-sphere in S3 disjoint from
`. By the positive solution of the Smith Conjecture [28], f is unknotted and so
the homeomorphism φ is conjugate to one point compactification of the standard
2π
n -rotation about the z-axis in R3. Hence the quotient map π : S3 → S3/Zn is an
n-fold cyclic cover branched along π(f) = f∗, and `∗ = π(`) is also a link in the
orbit space S3/Zn

∼= S3, which is called the factor link of `.
A natural question is how to determine whether a link is periodic with a given

period. In 1962, Fox[11] conjectured that a non trivial knot has only finitely many
periods. This conjecture was first proved by Flapan[9] in 1983 and Hillman[16]
extended her argument to apply to links in 1984. But in neither case was any kind
of applicable bound established for the periods of a given knot or link. In 1984,
an explicit upper bound for possible periods of a knot in terms of its genus was
given by Edmonds[8] and in 1994, Naik[34] sharpened this upper bound by using
the Murasugi conditions[7, 32] and his new results on the homology groups of the
finite cyclic covers of S3 branched along periodic knots. In general it is hard to
find the periods of a given knot or link. Much of study on periodic knots and
links concerns the criteria to determine the possible periods for a given knot or
link and the problem: Which invariants or properties of periodic knots and links
are determined by those of their factor knots or links? Up to now many available
techniques have been developed for determining the possible periods of knots and
links. The first significant results were those of Trotter[48] on the periods of torus
knots(cf.[6]) and some simple knots, obtained by analyzing possible actions on the
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fundamental group of the knot. Murasugi’s study[32] for the Alexander polynomials
of periodic knots proved especially powerful and further work on the Alexander
polynomial and some related invariants were done by many authors and these are
the subject of this survey article. Some results on the Jones polynomial and its
generalizations[33, 38, 39, 47, 51] and hyperbolic structures on knot complements[1]
have been applied to the study of periodic knots and links as well.

The purpose of this paper is to give a survey of the results that are known on
the Alexander polynomials of periodic knots and links in S3 and related topics;
the genera of periodic knots, the signatures of periodic links, and the homology
modules of the finite cyclic covers of S3 branched along periodic knots.

The paper is organized as follows. In Section 2, we discuss the Alexander poly-
nomials of periodic knots and links. In Section 3, we discuss upper bounds of the
possible periods of a given knot in terms of the genus and the Alexander polyno-
mial of the knot. In Section 4, we discuss some recent results on the signatures
of periodic links. Finally, in Section 5, we consider the finite cyclic covers of S3

branched along periodic knots. The proofs are referred to the original literature for
details.

2. The Alexander polynomials of periodic links

Let ` = k1 ∪ · · · ∪ kµ be an oriented link in S3 of µ components, let E be
the exterior of `, and let π1(E) be the link group of `. Let ti be the homology
class in H1(E) represented by a meridian of ki(1 ≤ i ≤ µ). Then H1(E) is a
free abelian group of rank µ generated by t1, · · · , tµ. Let γ : π1(E) → H1(E)
be the Hurewicz epimorphism and let Eγ be the universal abelian covering space
of E corresponding to the kernel of γ. Then H1(E) acts on Eγ as the covering
transformation group and so H1(Eγ) can be regarded as a module over the integral
group ring ZH1(E) of H1(E). By regarding H1(E) as the multiplicative free abelian
group Fµ with basis t1, · · · , tµ, we can identify ZH1(E) with the Laurent polynomial
ring Λ = Z[t±1

1 , · · · , t±1
µ ] in the variables t1, · · · , tµ, so that we can regard H1(Eγ)

as a Λ-module. The 0-th characteristic polynomial of H1(Eγ), i.e., the greatest
common divisor of the elements of the 0-th elementary ideal of H1(Eγ), is called
the Alexander polynomial of ` on µ variables, and denoted by ∆`(t1, · · · , tµ).

Now let ν : H1(E) → Fr be an epimorphism from H1(E) to the free abelian
group Fr of rank r with basis t1, · · · , tr and let Eν be the covering space over E

corresponding to the kernel of the composite homomorphism ν ◦ γ : π1(E) → Fr.

Then H1(Eν) can be regarded as a ZFr-module. The reduced Alexander polynomial
of ` on r variables associated to ν is defined to be the 0-th characteristic polyno-
mial of the ZFr-module H1(Eν) and denoted by ∆̃`(t1, · · · , tr). If ` is a knot, we
have ∆̃`(t)

.= ∆`(t). For µ ≥ 2, the relationship between the Alexander polyno-
mial ∆`(t1, · · · , tµ) and the reduced one ∆̃`(t1, · · · , tr) is as follow[22, Proposition
7.3.10]:

(2.1)

{
∆̃`(t1)

.= (t1 − 1)∆`(ν(t1), · · · , ν(tµ)) if r = 1,

∆̃`(t1, · · · , tr)
.= ∆`(ν(t1), · · · , ν(tµ)) if r ≥ 2.
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The (reduced) Alexander polynomials of links can be calculated by using various
methods[2, 4, 10, 22, 40, 42]. On the other hand, it is well known that any Alexander
polynomial ∆k(t) of a knot k in S3 satisfies the following two conditions:

(2.2) (i) ∆(1) = ±1, (ii) ∆(t) = tdeg∆∆(t−1).

Conversely, for any given polynomial ∆ ∈ Z[t] satisfying (2.2), there exists a knot
k with ∆k(t) = ∆[26, 42, 43]. By definition a polynomial ∆ ∈ Z[t] is called a knot
polynomial if it satisfies the two conditions of (2.2).

Now let ` = k1 ∪ · · · ∪ kµ be an oriented link in S3 of µ components and let f be
the oriented trivial knot such that `∩f = ∅. For any integer n ≥ 2, let π : S3 → S3

be the n-fold cyclic cover branched along f . We denote the preimage π−1(`) and
π−1(ki) by `(n) and k

(n)
i , respectively. Then k

(n)
i = ki1 ∪ · · · ∪ kiνi is a link of νi

components, where νi is the greatest common divisor of n and λi = Lk(ki, f), the
linking number of ki and f. We give an orientation to k

(n)
i inherited from ki. Then

`(n) = k
(n)
1 ∪ · · · ∪ k

(n)
µ = k11 ∪ · · · ∪ k1ν1 ∪ · · · ∪ kµ1 ∪ · · · ∪ kµνµ is an oriented

n-periodic link in S3 with ` as its factor link. Throughout this paper we call such
an oriented link `(n) the n-periodic covering link over `1 = ` ∪ f. Notice that every
link in S3 with cyclic period arises in this manner.

In 1971, Murasugi[32] gave a relationship among the reduced Alexander poly-
nomial ∆̃`(n)(t) of the periodic covering link `(n) and the Alexander polynomials
∆k(t), ∆k∪f (t1, t2) for the case that `1 = k ∪ f is a link of two components in a
homology 3-sphere M. Here we shall state the results for the special case M = S3 :

Theorem 2.1. Let `1 = k∪f, where f is unknotted, and let λ = Lk(`, f) 6= 0. Let
`(n) be the oriented n-periodic covering link in S3 over `1. Then

(2.3) ∆̃`(n)(t) .= ∆k(t)
n−1∏

i=1

∆k∪f (t, ωi),

where t in ∆̃`(n)(t) corresponds to meridians of all components of π−1(k) and ω

denotes a primitive n-th root of unity.
If n = prm, p a prime, (p,m) = 1, r > 0, then

δλ(t)∆̃`(n)(t) ≡ [
m−1∏

i=0

∆k∪f (t, ηi)]p
r

(mod p),

where δλ(t) = (1− tλ)/(1− t) and η denotes a primitive m-th root of unity. In
particular, if m = 1, then

∆̃`(n)(t) ≡ ∆k(t)pr

δλ(t)pr−1 (mod p).

Theorem 2.2. Let `1 = k∪f be a two component link in S3, where f is unknotted
and Lk(k, f) = λ. Let k(n) be the n-periodic covering knot over `1 = k ∪ f, where
n = pr(r ≥ 1) and p is a prime with (λ, p) = 1. Then

∆k(n)(t) ≡ (1 + t + · · ·+ tλ−1)n−1∆k(t)n (mod p).
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Corollary 2.3. Suppose that k is a periodic knot of a prime power period n = pr

in S3. Then the Alexander polynomial ∆k(t) of k must satisfy the following:

(2.4) ∆k(t) ≡ (1 + t + · · ·+ tλ−1)n−1∆(t)n (mod p)

for some positive integer λ, (λ, p) = 1, and a certain knot polynomial ∆(t).

Corollary 2.4. Suppose that k is a periodic knot of a prime power period n = pr

in S3. If ∆k(t) is not a product of other knot polynomials in Z(t), then for some
positive integer λ, (λ, p) = 1,

∆k(t) ≡ (1 + t + · · ·+ tλ−1)n−1 (mod p),

and hence, for any integer s,

∆k(s) ≡ 0 or ± 1 (mod p).

Corollary 2.3 and 2.4 give us useful criteria to detect periodicity of a given knot.
Murasugi’s results have been extended to the more general case by Hilman[15,
17], Sakuma[41], Turaev[50], and Lee[24]. In 1994, Miyazawa[29] gave a similar
relationship among the Conway polynomials of `, `1 and `(n) for periodic links.

Theorem 2.5 ([41]). Let `1 = ` ∪ f = k1 ∪ · · · ∪ kµ ∪ f ⊂ S3 and let `(n) be the
n-periodic covering link over `1 = ` ∪ f. Then

∆̃`(n)(t1, · · · , tµ) .= ∆`(t1, · · · , tµ)
n−1∏

j=1

∆`∪f (t1, · · · , tµ, ω),

where ti(1 ≤ i ≤ µ) corresponds to meridians of all components of π−1(ki) =
ki1 ∪ · · · ∪ kiνi .

Theorem 2.6 ([24]). Let ` be an oriented link in S3 of µ components, let `1 = `∪f,

where f is unknotted, and let λ = Lk(`, f). Let `(n) be the oriented n-periodic
covering link in S3 over `1 of period n = pr(r ≥ 1), where p is an odd prime. Then
the reduced Alexander polynomials ∆̃`(n)(t) and ∆̃`(t), where a meridian of each
component of `(n) and ` corresponds to t, satisfy the congruence:

(2.5) ∆̃`(n)(t) ≡ (1 + t + · · ·+ tλ−1)n−1∆̃`(t)n (mod p).

In 1991, Davis and Livingston[7] tried to give a characterization of the Alexander
polynomials of periodic knots. To do this end they rephrased the formula (2.3) as
follows:

Murasugi Conditions. Let ∆ be a knot polynomial, n a positive integer, and
G =< g >, the cyclic group of order n generated by g. There is a knot polynomial
∆∗, a polynomial ∆G(t, g) ∈ Z[G][t, t−1], and a positive integer λ with (λ, n) = 1
such that

(i) ∆∗ divides ∆,

(ii) ∆/∆∗ =
∏n−1

i=1 ∆G(t, ωi),
(iii) ∆G(1, g) = δλ(g), ∆G(t, 1) = δλ(t)∆∗(t),
(iv) ∆G(t−1, g−1) = tagb∆G(t, g) for some integer a, b,
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where δλ(t) = (1− tλ)/(1− t) and ω is a primitive n-th root of unity.

From the Torres condition[45] and the formula (2.3), it is not difficult to see
that if ∆ is the Alexander polynomial of an n-periodic knot, then the pair (∆, n)
satisfies the Murasugi conditions. Here are the two natural questions on Murasugi
conditions: (1) Given a knot polynomial ∆ and n a positive integer, when are the
Murasugi conditions satisfied? (2) For a given pair (∆, n), if it satisfies the Murasugi
conditions, is there a knot k of period n such that the Alexander polynomial ∆k(t)
of k is equal to ∆? To answer the question (1) it is necessary to find unknown
polynomials ∆∗ ∈ Z[t] and ∆G(t, g) in Z[G][t, t−1] satisfying the conditions. But
it may be a somewhat difficult algebraic problem. In the case that n is a prime
p, Davis and Livingston[7] gave more easily applicable criteria, Modified Murasugi
Conditions on (∆, p), and some practical examples. For the question (2), they
presented the following conjecture and obtained some partial answers:

Conjecture. If (∆, n) satisfies the Murasugi Conditions, then ∆ is the Alexander
polynomial of a knot of period n.

Theorem 2.7 ([7]). If (∆, n) satisfies the Murasugi Conditions with λ = 1, then
∆ is the Alexander polynomial of a knot k of period n with ∆k∗(t) = ∆∗.

Corollary 2.8. A knot polynomial ∆ which is congruent to 1 modulo n is the
Alexander polynomial of a knot of period n.

For a given pair (∆, n) satisfying the Murasugi Conditions, the construction of
an n-periodic knot k with ∆k(t) = ∆ is closely related to the classification problem
of the Alexander polynomials of two components links. More precisely, in 1953,
Torres[45] discovered a formula relating the Alexander polynomial of a two compo-
nent link to the polynomials of its component knots. Since the possible Alexander
polynomials of knots are known[43], there arose the question of whether Torres
conditions are sufficient for a two variable polynomial ∆(s, t) ∈ Z[s, t] to be the
Alexander polynomial of a two component link. Now it was shown that Torres
conditions are insufficient to characterize the Alexander polynomials of two compo-
nents links ` = k1 ∪ k2 with the linking number Lk(k1, k2) ≥ 3[18, 37]. While, the
Torres conditions are sufficient to characterize the Alexander polynomials of two
component links with the linking number 0 and 1[27]. So only the case of linking
number 2 is left unresolved. This leads that the above Davis and Livingston’s con-
jecture is answered negatively for the case of linking number λ ≥ 3 and consequently
the only case of λ = 2 is still open.

The remainder of this section will be devoted to discuss the works on the splitting
field over Q of the Alexander polynomial ∆k(t) of a periodic knot k. In 1961,
Trotter[48] showed that if the commutator subgroup of the group of a knot k with
prime power period n = pr is free and if ∆k(t) has no repeated roots, then the n-th
roots of unity lie in Split(∆k/Q), where Split(∆k/Q) is the splitting field of ∆k(t)
overQ. In 1978, Burde[5] weakened Trotter’s hypotheses to requiring that ∆k(t) 6≡ 1
(mod p) and the second Alexander polynomial ∆2,k(t)[10] is trivial and this was
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extended to all knots by Hillman[19] as a condition involving the higher Alexander
polynomials: if ∆k(t) 6≡ 1 (mod p) but ∆m+1,k(t) = 1, then ζ has degree at most
m over Split(∆k/Q), where ζ is a primitive n-th root of unity. The Burde-Trotter
and Murasugi conditions have been extended to knots in homology 3-spheres[15].
More recently, Hillman[20] showed that if ∆k(t) is the Alexander polynomial of a
knot k with prime power period n = pr, then the Burde-Trotter condition implies
that [Q(ζ) : Q(ζ) ∩ Split(∆k/Q)] ≤ m, where m is the maximal multiplicity of
irreducible factors of ∆k(t). He also proved the following:

Theorem 2.9. Let ∆ be a polynomial in Z[t] which satisfies the Murasugi condi-
tions for some prime power n = pr. Suppose that ∆ has irreducible factorization
∆ =

∏
δei
i . Then either ∆ ≡ 1 (mod p) or

[Q(ζ) : Q(ζ) ∩ Split(∆/Q)] ≤ m = max{ei}.

3. A bound of the periods of a knot

The genus, g(`), of a link ` in S3 is defined to be the minimum of the genera of
Seifert surfaces bounded by `. By means of the theory of least area surfaces and
the Riemann-Hurwitz formula for branched coverings of surfaces, Edmonds[8] gave
an upper bound of possible periods of a given knot in terms of its genus:

Theorem 3.1. If k is an n-periodic knot with genus g, then k has a genus g Seifert
surface which is invariant under the action of Zn.

Corollary 3.2. If k is an n-periodic knot with genus g, then n ≤ 2g + 1.

Proof. Let S be a genus g Seifert surface of k which is invariant under the action
of Zn. Then the quotient map S → S/Zn is an n-fold cyclic branched covering
with m-branch points, where m is the number of points of intersection of the fixed
point set f of the periodic Zn-action and the equivariant Seifert surface S. By the
Riemann-Hurwitz formular, χ(S) = nχ(S/Zn)−m(n− 1). Set χ(S) = 1− 2g and
χ(S/Zn) = 1− 2ḡ. This yields that n(2ḡ + m− 1) = 2g + m− 1. This implies that
n ≤ 2g + 1. ¤
Remark 3.3. The proof of Corollary 3.2 shows that one can actually has n ≤ g

with just two exceptions:

(i) ḡ = 0,m = 2, and n = 2g + 1,

(ii) ḡ = 0,m = 3, and n = g + 1.

The only ways one can have n = g are

(i) ḡ = 0,m = 5, and n = g = 2,

(ii) ḡ = 0,m = 4, and n = g = 3,

(ii) ḡ = 1,m = 1, and n = g.

Corollary 3.4. If k is a nontrivial n-periodic knot with genus g, trivial Alexander
polynomial ∆k(t) = 1, then n ≤ g + 1.

The following Theorem is an immediate consequence of the argument in the
proof of Corollary 3.2, which is known as Riemann-Hurwitz Formula for periodic
knots:
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Theorem 3.5 ([34]). Let k be a knot of period n with genus g and let g∗ be the
genus of the factor knot k∗. Let m be the number of points of intersection of the
fixed point set f of the periodic Zn-action and an equivariant Seifert surface S of
k with genus g. Then

g = nḡ +
(n− 1)(m− 1)

2
,

where ḡ denotes the genus of the surface S/Zn. In particular, g ≥ ng∗.

By combining Corollary 3.2, Remark 3.3, and Theorem 2.2, Naik[34] observed the
following results, which give us highly efficient criteria in determining the possible
periods higher than the genus of a given knot:

Theorem 3.6. Let k be a knot of period n with genus g. If n = pr, p a prime, and
n > g. Then g∗ = 0 and exactly one of the followings holds:

(i) n = g + 1, λ = 1, and ∆k(t) ≡ 1 (mod p).
(ii) n = g+1, λ = 3, deg∆k(t) = 2(n−1), and ∆k(t) ≡ (1+ t+ t2)n−1 (mod p).
(iii) n = 2g + 1, λ = 2, deg∆k(t) = n− 1, and ∆k(t) ≡ (1 + t)n−1 (mod p).

Corollary 3.7. Let n = pr, where p is a prime and r > 0. If k is a nontrivial
n-periodic knot with genus g, ∆k(t) ≡ 1 (mod p), then n ≤ g + 1.

The corollary 3.7 is a sharpened version of Corollary 3.4 for prime power periods.
Now let c(k) be the minimum crossing number of a knot k, i.e., the least number

among the number of crossings in all diagrams representing the knot k. Then the
following theorems follow from Corollary 3.2, Theorem 3.6, and the fact that if k

is not the (c(k), 2) torus knot, then g(k) ≤ [ c(k)
2 ]− 1, where [x] denote the greatest

integer ≤ x[34]:

Theorem 3.8. Let k be a knot of period n. Then n ≤ c(k)− 1. Moreover, if c(k)
is odd and k is not the (c(k), 2) torus knot, then n ≤ c(k)− 2.

Theorem 3.9. Let k be a knot of period n, n = pr, p a prime, k is not the (c(k),
2) torus knot, and [ c(k)

2 ] ≤ n, Then g∗ = 0 and exactly one of the followings holds:

(i) n = g + 1 = [ c(k)
2 ], and ∆k(t) ≡ 1 (mod p).

(ii) n = g + 1 = [ c(k)
2 ], deg∆k(t) = 2(n − 1), and ∆k(t) ≡ (1 + t + t2)n−1

(mod p).
(iii) n = 2g + 1, deg∆k(t) = n− 1, and ∆k(t) ≡ (1 + t)n−1 (mod p).

The periods of prime knots with crossings ≤ 10 are completely determined by
various criteria for periodicity of knots and links[4, 23]. By using his results illus-
trated in this section, Naik[34] gave a short proof of previously known results for
periodicity of prime knots with crossings ≤ 10 and also determined the possible
periods of 11-crossing knots in the table in [36]:

Theorem 3.10. (1) The only possible periods for an 11-crossing knot are
2, 3, 4, 5, and 11.

(2) There is exactly one 11-crossing knot of period 11, namely 111.
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(3) At most three 11-crossing knots can have period 5; there are 11224, 11471,

and 11473.

4. The signatures of periodic links

Let F be a Seifert surface of ` with the genus g(F ). Then the homology group
H1(F ;Z) is a free abelian group with n = 2g(F )+µ−1 generators. Let α1, α2, · · · , αn

denote oriented simple closed curves that represent a basis for H1(F ;Z). Consider a
collar F × [0, 1]. For all i, j ∈ {1, 2, · · · , n}, denote α0

i = αi×{0} and α1
i = αi×{1}

with orientations induced by αi. Define MF (`) = ∅ if g(F ) = 0 and µ = 1 and,
otherwise, MF (`) = (Lk(α0

i , α
1
j ))1≤i,j≤n. The matrix MF (`) is called the Seifert

matrix of ` associated to F. Two Seifert matrices obtained from two equivalent
knots or links are S-equivalent[22]. Let L be the set of all knots and links in S3.

The map σ : L → Z defined by σ(`) = σ(MF (`) + MF (`)T ) is an invariant of knots
and links and we call σ(`) the signature of `. The map N : L → N defined by
N (`) = N (MF (`)+MF (`)T )+1 is an invariant of knots and links and we call N (`)
the nullity of `[12, 22, 30, 44, 46, 49]. There were several studies on the signatures
of 2-periodic knots and links[13, 31, 25] and a certain relation between the Alexan-
der polynomial of a knot with prime power period and its signature invariant[14].
Recently these results are extended to the more general case[24]:

Theorem 4.1. Let `1 = ` ∪ f be an oriented link in S3 of µ + 1 components such
that f is unknotted. For any integer n ≥ 2, let `(n) be the n-periodic covering link
over `1. We assume that N (`(n)) = N (`).

(1) If either Lk(`, f) and N (`) are odd or Lk(`, f) and N (`) are even, then

σ(`(n)) ≡
{

nσ(`) (mod 4) if n is odd
(n− 1)σ(`) + σ(` ∪ f) + Lk(`, f) (mod 4) if n is even

(2) If either Lk(`, f) is odd and N (`) is even or Lk(`, f) is even and N (`) is
odd, then

σ(`(n)) ≡
{

nσ(`) + n− 1 (mod 4) if n is odd
(n− 1)σ(`) + σ(` ∪ f) + Lk(`, f) + n− 2 (mod 4) if n is even

Theorem 4.2. Let ` be an oriented link in S3 of µ components, let `1 = ` ∪ f,

where f is unknotted, and let λ = Lk(`, f). Let `(n) be the oriented n-periodic
covering link in S3 over `1 of period n = pr(r ≥ 1), where p is an odd prime.
Suppose that the reduced Alexander polynomial ∆̃`(n)(t) of `(n) satisfies that

(i) ∆̃`(n)(t) is not a product of non-trivial link polynomials,
(ii) ∆̃`(n)(t) 6≡ 0,±1 (mod p).

Then

(1) ∆̃`(n)(t) ≡ (1 + t + · · ·+ tλ−1)n−1 (mod p).
(2) If ∆̃`(n)(−1) 6= 0, then

σ(`(n)) ≡
{

0 (mod 4) if λ is odd,

n− 1 (mod 4) if λ is even.
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5. Finite cyclic branched covers of periodic knots

Let k be an n-periodic knot in S3 with periodic homeomorphism φ : S3 → S3.

From the Equivariant Tubular Neighborhood Theorem(see Chapter IV, Theorem
2.2 of [3]), there exists a tubular neighborhood T of k in S3 such that φ(T ) = T.

Let X = S3− int(T ) and let θ : Xm → X be the m-fold cyclic cover of X. Then the
boundary ∂Xm is a torus that covers ∂X = T by wrapping the meridian of ∂Xm

around the meridian of T, m-times. The m-fold cyclic cover Mm of S3 branched
along the periodic knot k is then obtained by attaching a solid torus D2 × S1 to
Xm along ∂Xm in such a way that ∂D2 × {pt} is identified with the meridian
of ∂Xm. The covering projection θ : Xm → X clearly extends to the branched
covering projection θ̃ : Mm → S3. It is shown[34, Proposition 2.2] that the n-
periodic homeomorphism φ : S3 → S3 is extended to an n-periodic homeomorphism
φ̃ : Mm → Mm such that θ̃ ◦ φ̃ = φ ◦ θ̃. This implies that the cyclic group Zn

generated by φ̃ acts on the branched cover Mm. It is easy to see that Mm/Zn is
the m-fold cyclic cover of S3 branched along the factor knot k∗ = k/Zn.

Let p be a prime integer and let H1(Mm)p and H1(Mm/Zn)p denote the p-
Sylow subgroups of H1(Mm) and H1(Mm) consisting of the elements of order
a power of p, respectively. For distinct two primes p and q, let fq(p) denote the
multiplicative order of p (mod q), i.e., the least positive integer such that pfq(p) ≡ 1
(mod q). The following results on a characterization of p-Sylow subgroup of the
torsion submodules of the homology modules of the m-fold cyclic cover Mm of S3

branched along a periodic knot k were given by Naik in [34]:

Theorem 5.1. Let k be a periodic knot with a prime period q and let H1(Mm/Zn)p =
0 for some prime p 6= q. Then there exist nonnegative integers t, a1, · · · , at such that

H1(Mm)p
∼= (Cp)a1fq(p) ⊕ (Cp2)a2fq(p) ⊕ · · · ⊕ (Cpt)atfq(p).

Corollary 5.2. Let k be a periodic knot with a prime period q and let k∗ be the its
factor knot. Let Mm and M∗

m be the m-fold cyclic covers of S3 branched along k

and k∗, respectively. Then for each prime factor p 6= q of |H1(Mm)| which does not
divide |H1(M∗

m)|, we have that pfq(p) divides |H1(Mm)|, where |H1(Mm)| denotes
the order of the torsion subgroup of H1(Mm).

It is well known [4, 21] that for a primitive m-th root of unity ζ,

|H1(Mm)| = |
m∏

i=1

∆k(ζi)| and |H1(M∗
m)| = |

m∏

i=1

∆k∗(ζ
i)|.

Theorem 5.3. Let k be a periodic knot with a prime period q and let k∗ be the
its factor knot. Let ∆k(t) and ∆k∗(t) be the Alexander polynomials of k and k∗,
respectively. Let p be a prime such that p 6= q and for a positive integer m, ζ denote
a primitive m-th root of unity. Then the following statements are true.

(i) If a ∈ Z and p | (∆k/∆k∗)(a), then pfq(p) | (∆k/∆k∗)(a).
(ii) If m ≥ 2 and p |∏m

i=1(∆k/∆k∗)(ζ
i), then pfq(p) |∏m

i=1(∆k/∆k∗)(ζ
i).
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In 1997, under the hypothesis of Theorem 5.1, it was shown[35] that there exist
nonnegative integers t, a1, · · · , at such that

H1(Mm)p
∼= (Cp)2a1fq(p) ⊕ (Cp2)2a2fq(p) ⊕ · · · ⊕ (Cpt)2atfq(p),

where fq(p) denotes the least positive integer such that pfq(p) ≡ ±1 (mod q). This
new characterization of H1(Mm)p gives the following corollary which is more useful
and easily applicable to practical examples when it is combined with the Murasugi
results, Theorem 2.1 and Corollary 2.2:

Corollary 5.4 ([35]). Let k be a periodic knot with a prime period q and let k∗
be the its factor knot. Let m be a power of a prime. Let ∆k(t) and ∆k∗(t) be the
Alexander polynomials of k and k∗, respectively, and let ζ be a primitive m-th root
of unity. Suppose that there exists a prime p such that p -

∏m
i=1 ∆k∗(ζ

i), and the
highest power of p which divides

∏m
i=1 ∆k(ζi) is odd. Then q is either 2 or p.

Finally we note that there exists a close relation between the Alexander poly-
nomial of a knot and the genus of a knot. As an example, H. Seifert[42] showed
that for any knot polynomial ∆, there exists a knot k with g(k) = 1

2deg∆ and with
∆ = ∆k(t). Using Theorem 3.5 and Theorem 5.3, Naik[34] proved the following
theorem which discuss the genus of a periodic knot with a prescribed Alexander
polynomial and show that for a certain knot polynomial ∆ with ∆ ≡ 1 (mod q) for
some q > 1, the genus of any q-periodic knot k with ∆k = ∆ has to be fairly high:

Theorem 5.5. Let ∆ be a nontrivial knot polunomial and let q be a prime. Suppose
that for each knot polynomial f(t) 6= ∆ and dividing ∆, there exists an integer
a = a(f) and a prime p = p(f) satisfying the following three conditions:

(i) p 6= q, (i) p | (∆/f)(a), (i) pfq(p) - (∆/f)(a).

Then for any period q knot k with ∆k = ∆, we have that g(k) ≥ 1
2qdeg∆.
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