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STANDARDIZING CURVES IN PUNCTURED DISKS

SANG JIN LEE

Abstract. Let D2 be the disc in the complex plane centered at the origin with

radius n + 1. Let Dn be the n-punctured disc D2 \ {1, . . . , n}. We show that

given any collection of essential simple closed curves in Dn there is a unique

shortest positive n-braid that make it standard, that is each curve intersects

the real line exactly twice.

1. Introduction

Let D2 be the disc {z ∈ C : |z| ≤ n + 1} in the complex plane and Dn be
the n-punctured disc D2 \ {1, . . . , n}. A curve system in Dn means a collection of
simple closed curves in Dn. It is essential if none of its components is homotopic
to a point, to a puncture or to the boundary. It is standard if each component
intersects the real line exactly twice as Figure 1. We say that an an automorphism
(orientation preserving self-homeomorphism) f of Dn standardize the curve system
C ⊂ Dn, if f(C) is standard. See Figure 2. It is obvious that for any curve system
in Dn there are infinitely many standardizing automorphisms. We are interested
at:

Question. Is there a canonical way to standardize essential curve systems in Dn?

Figure 1. A standard curve system in D10

The Artin braid group on n-strands, Bn, is the group of automorphisms of
Dn that fix the boundary point-wise, modulo isotopy relative to the boundary.
To answer the question, we study the action of braids on the curve systems in
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↙ standardize ↘

Figure 2. Standardization of a curve system

positive−→

negative−→
(a) Dehn-tiwsts (b) Artin generator σ2 ∈ B4

Figure 3. Dehn-twists and Artin generator

punctured disks. Let σi be the isotopy class of the positive Dehn-twist along the
straight line segment connecting the punctures i and i + 1. See Figure 3 (a) for
Dehn-twists. Note that any automorphism of Dn fixing the boundary point-wise is
isotopic to a composition of σ±1

i . So σi’s generate Bn. In fact Bn has the group
presentation

Bn =

〈
σ1, . . . , σn−1

∣∣∣∣
σiσj = σjσi if |i− j| ≥ 2

σiσjσi = σjσiσj if |i− j| = 1

〉
.

An n-braid can be thought as a collection of n strands l = l1 ∪ · · · ∪ ln in
the horizontal cylinder [0, 1] × D2 such that | l ∩ (t × D2)| = n for 0 ≤ t ≤ 1
and l ∩ (t × D2) = t × {1, . . . , n} for t = 0, 1, by considering the trajectories
of the punctures under the isotopy from the the homeomorphism to the identity.
Figure 3 (b) illustrates the correspondence.

A braid is reducible if there is a collection of essential simple closed curves whose
isotopy class is invariant under the action of the given braid. The isotopy class of
such a curve system is called a reduction system. Our question is related to the
problems:
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(1) Given a braid, decide whether or not it is reducible.
(2) Given a reducible braid, find a reduction system.

The importance and the interest of these questions come from the Nielsen-
Thurston classification theorem [Thu88]. For a reducible braid, we can cut the
disc along a reduction system to get a collection of simpler braids. We can do the
same thing to the automorphisms of any surfaces. The Nielsen-Thurston clas-
sification theorem is that the irreducible automorphisms are either periodic or
pseudo-Anosov. In pseudo-Anosov case, there is a beautiful dynamical structure,
a pair of transverse invariant measured foliations. In reducible case, there is a
canonical reduction system due to Birman, Lubotzky and McCarthy [BLM83] and
Ivanov [Iva92].

There have been several approaches to decide the dynamical types of mapping
classes. In [BH95], Bestvina and Handel make so-called the train track algorithm
that decides, given any automorphism of orientable surfaces, the dynamical types
and finds the dynamical structures; a pair of transverse invariant measured folia-
tions for pseudo-Anosov case and a reduction system for reducible case. Indepen-
dently in [BNG95], Bernardete, Nitecki and Gutiérrez make a different algorithm
to decide the reducibility of braids.

All the above algorithms seem to be exponential with respect to the word-length
of the given braid. For the train track algorithm, we first write the braid to a graph
map, which is exponential. And the solution of Bernardete, Nitecki and Gutiérrez
needs the whole algorithm to the conjugacy problem, which is also exponential up
to the current knowledge. We hope that this paper provide a good step toward
polynomial time (with respect to the braid index and the word-length of the given
braid) solutions to decide the dynamical types and to find dynamical structures of
braids.

The difficulty of recognizing reducibility comes from that the reduction systems
are in general very complicated. But it is easy to decide whether a given braid has
a standard reduction system.

Theorem 6. There is an algorithm that decides, given an n-braid α, whether there
exists a standard curve system that is invariant under α, and if there exists, finds
one. The time complexity is O(n3`2), where ` is the word-length of α.

Note that any reducible braid is conjugate to a braid with a standard reduction
system. The question is how to find such a conjugate braids. So we study how to
standardize the curve systems. For a braid α and a curve system C, let α ∗C be the
result of the action of α on C, which is the question mentioned at the beginning.
The following result answers the question.
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Corollary 8. Given any curve system C, there exist a unique positive braid P such
that P ∗ C is standard and if Q is another positive braid with Q ∗ C standard, then
Q = RP for some positive braid R.

The ‘uniqueness’ of the theorem is very useful in applications. To explain the
idea of our approach, we recall the Garside algorithm. It is first used by Garside
in [Gar69] to solve the word and the conjugacy problem in braid groups. In this
approach, we study the properties of the positive braid monoid B+

n and get a unique
normal form as α = ∆uA1 · · ·Ak for α ∈ Bn, where ∆ is the Garside element, u ∈ Z
and Ai’s are the permutation braids. We note that, informally, the normal form can
be considered as a horizontal decomposition under the convention of drawing braids
horizontally, whereas the decomposition using the reduction system is vertical. So
these two decompositions fit together well.

After finishing the paper, the author found that some lemmas in this paper are
already known to Bernardete, Nitecki and Gutiérrez. But we include the proofs of
such lemmas, because it is written in different ways in their paper and our proof
is much simpler than their due to the recent progress on the Garside structures of
braid groups.

Acknowledgements. The main part was made during the visit to Columbia Uni-
versity in April 2003. I thank Joan Birman for her hospitality and stimulating
suggestions. The author is grateful to Ki Hyoung Ko and Won Taek Song for
helpful discussions.

2. Garside algorithm to conjugacy problem

This section reviews the Garside algorithm briefly. See [Gar69, DP99, ECHLPT]
for details. Let B+

n be the monoid generated by σ1, . . . , σn−1 with defining relations
same as in §1. Then B+

n is a (left and right) cancellative monoid that embeds in
the group Bn under the canonical homomorphism. The elements of B+

n are called
positive braids. We use the capital letters P, Q, R, . . . to denote positive braids.

Define the partial ordering 4 and < on the positive braids as follows: if P = QR

for positive braids P, Q, R, then we write Q 4 P and P < R. We say that Q is a
left divisor of P and R is a right divisor of P .

For any positive braids P and Q, there is unique left lcm P ∨L Q ∈ B+
n such that

(P ∨L Q) < P , (P ∨L Q) < Q and for any positive braid R, R < P and R < Q imply
R < (P ∨LQ). And there is unique right gcd P ∧R Q ∈ B+

n such that P < (P ∧R Q),
Q < (P ∧RQ) and for any positive braid R, P < R and Q < R imply (P ∧RQ) < R.
The right lcm P ∨R Q and left gcd P ∧L Q are defined similarly.

The braid ∆ = (σ1 · · ·σn−1)(σ1 · · ·σn−2) · · · (σ1σ2)σ1 as in Figure 4 (a) is called
the Garside element. The set of left divisors of ∆ equals the set of right divisors.
The left (equivalently, right) divisors of ∆ are called the simple elements. For
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(a) Garside element ∆ ∈ B4 (b) A braid in normal form

Figure 4. Garside element and normal form

each i, σi is a simple element. And ∆−1α∆ = τ(α) for α ∈ Bn, where τ is the
automorphism of Bn such that τ(σi) = σn−i.

For any α ∈ Bn, there are integers r ≤ s such that ∆r 4 α 4 ∆s. The maximal
such r is called the infimum and denoted by inf(α). The minimal such s is called
the supremum and dented by sup(α). There are uniquely defined simple elements
A1, . . . , Ak such that α = ∆inf(α)A1 · · ·Ak and (Ai · · ·Ak) ∧L ∆ = Ai. We call this
expression as the left normal form of α. The right normal form is defined similarly:
α = ∆inf(α)A1 · · ·Ak and (A1 · · ·Ai)∧R ∆ = Ai. We sometimes write the left/right
normal form as α = A1 · · ·Ak∆inf(α).

The normal form can be also characterized by using the staring set and the fin-
ishing set. For a positive braid P they are denoted by S(P ) and F (P ) respectively:

S(P ) = {i | P = σiQ for some Q ∈ B+
n }

F (P ) = {i | P = Qσi for some Q ∈ B+
n }.

The simple elements are also called the permutation braids, because they are
in one-to-one correspondence with the n-permutations: for a permutation θ on
{1, . . . , n}, connect (0, θ(i)) to (1, i) by a straight line and then at each crossing,
make the line from (0, θ(i)) to (1, i) lie over the line from (0, θ(j)) to (1, j) if i < j.
We remark some results concerning normal forms.

(1) A positive braid is a permutation braid if and only if any two strands cross
at most once [ECHLPT, EM94].

(2) For a permutation braid A corresponding to a permutation θ, the starting
set and finishing set are as follows:

S(A) = {i | θ−1(i) > θ−1(i + 1)}
F (A) = {i | θ(i) > θ(i + 1)}.

(3) α = ∆rA1 · · ·Ak is the left normal form if and only if r = inf(α) and
F (Ai) ⊃ S(Ai+1) for i = 1, . . . , k − 1. See Figure 4 (b).

(4) In [ECHLPT], Thurston introduced the np-form. Any braid α ∈ Bn has
a unique expression, called the np-form, as α = P−1Q, where P, Q are
positive braids with S(P ) ∩ S(Q) = ∅. In this case if P 6= e and α =
∆rA1 · · ·Ak is the left normal form, then Q = Ai · · ·Ak for some i.
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Figure 5. A un-nested standard curve system Cn, n = (1, 1, 2, 1, 2, 3)

(a) σ−1
1 σ2 ∈ B3 (b) 〈σ−1

1 σ2〉n ∈ B6 for n = (2, 3, 1) (c) e⊕ σ1 ⊕ σ2

Figure 6

Similarly, we can consider pn-form as α = PQ−1, where P, Q are positive
braids with F (P ) ∩ F (Q) = ∅. In this case if P 6= e and α = A1 · · ·Ak∆r

is the right normal form, then Q−1 = Ai · · ·Ak∆r for some i.

3. Standardizing curves in punctured disks

An essential curve system is called un-nested if none of its component is contained
in another component. See Figure 5. The un-nested standard curve systems in Dn

are in one to one correspondence with the k-compositions of n for k = 2, . . . , n− 1.
Recall that a tuple n = (n1, . . . , nk) of positive integers is a k-composition of n if
n = n1 + · · · + nk. For a composition n = (n1, . . . , nk), Let Cn be the un-nested
standard curve system C = ∪ni≥2Ci, where Ci is the standard curve intersecting the
real line once at each of the open intervals (

∑i−1
j=1 nj , 1+

∑i−1
j=1 nj) and (

∑i
j=1 nj , 1+∑i

j=1 nj). See Figure 5.
For α0 ∈ Bk, we denote by 〈α0〉n the n-braid obtained from α0 by taking ni

parallel copies of the i-th strand of α0. See Figure 6 (a,b). For a tuple (α1, . . . , αk),
αi ∈ Bni , we denote by α1⊕· · ·⊕αk the n-braid α′1α

′
2 · · ·α′k, where α′i is the image

of αi under the homomorphism Bni → Bn, σj 7→ σn1+···+ni−1+j . See Figure 6 (c),
where e is the trivial element in B1 which is the trivial group.

The n-braids act on the set of curve systems in Dn both on left and on right.
We write C ∗α and α ∗ C to denote the actions of an n-braid α to a curve system C
in Dn. The k-braid group Bk acts on the set of k-compositions of n from left and
right via the induced permutations as follows: for a k-composition n = (n1, · · · , nk)
and a k-braid α0 with induced permutation θ, α0 ∗ n = (nθ−1(1), . . . , nθ−1(k)) and
n ∗ α0 = (nθ(1), . . . , nθ(k)). It is easy to see the followings:
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(1) If A is a permutation then so is 〈A〉n, since any two strands cross at most
once.

(2) 〈α0〉n ∗ Cn = Cα0∗n and Cn ∗ 〈α0〉n∗α0 = Cn∗α0 .
(3) If Ai is the rightmost simple element of Pi for i = 1, . . . , k, then A1⊕· · ·⊕Ak

is the rightmost simple element of P1 ⊕ · · · ⊕ Pk.
(4) 〈α0〉n(α1⊕· · ·⊕αk) = (αθ−1(1)⊕· · ·⊕αθ−1(k))〈α0〉n, where θ is the induced

permutation α0.

Lemma 1. Let n = (n1, . . . , nk) be a k-partition of n. If α is an n-braid such that
α ∗ Cn is un-nested and standard, then α = 〈α0〉n(α1 ⊕ · · · ⊕ αk), for some k-braid
α0 and ni-braids αi for i = 1, . . . , k. In particular, α ∗ Cn = Cα0∗n.

Proof. Let E and E′ be the outermost component of Dn \ Cn and Dn \ (α ∗ Cn)
respectively. Then E and E′ are canonically identified with the k-punctured disc
Dk since Cn and α ∗ Cn are un-nested and standard. And α(E) = E′. Let α0 be
the k-braid obtained by the composition

Dk ' E
α|E→ E′ ' Dk,

where α|E is the restriction of α to E and Dk ' E and E′ ' Dk are the identifica-
tions. Then α and 〈α0〉n coincide on E so that 〈α0〉−1

n α is the identity on E. So
〈α0〉−1

n α = α1 ⊕ · · · ⊕ αk for ni-braids αi. ¤

Lemma 2. Let n be a k-composition of n and A1, A2 be permutation k-braids. If
A1A2 is in left/right normal form, then so is 〈A1〉A2∗n 〈A2〉n.

Proof. Let A2 ∗ n = (n′1, . . . , n
′
k). Then it is easy to see that F (〈A1〉A2∗n) =

{n′1 + · · · + n′i | i ∈ F (A1)} and S(〈A2〉n) = {n′1 + · · · + n′j | j ∈ S(A2)}. Since
A1A2 is in right normal form, F (A1) ⊂ S(A2). So F (〈A1〉A2∗n) ⊂ S(〈A2〉n) and
〈A1〉A2∗n 〈A2〉n is in right normal form. Same argument applies to the left normal
form. ¤

Lemma 3. Let P = 〈P0〉n(P1⊕· · ·⊕Pk). Let Ai be the rightmost permutation braid
in the right normal form of Pi for i = 0, . . . , k. Then the rightmost permutation
braid in the right normal form of P is 〈A0〉n(A1 ⊕ · · · ⊕Ak).

Proof. By Lemma 2, the rightmost permutation braid of 〈P0〉n is 〈A0〉n. So the
rightmost permutation braid of P equals the rightmost permutation braid of 〈A0〉n(P1⊕
· · ·⊕Pk) = (Pθ−1(1)⊕· · ·⊕Pθ−1(k))〈A0〉n, where θ is the induced permutation of A0.
Since Aθ−1(1) ⊕ · · · ⊕Aθ−1(k) is the rightmost permutation braid of Pθ−1(1) ⊕ · · · ⊕
Pθ−1(k) and (Aθ−1(1)⊕· · ·⊕Aθ−1(k))〈A0〉n = 〈A0〉n(A1⊕· · ·⊕Ak) is a permutation
braid, 〈A0〉n(A1⊕· · ·⊕Ak) is the rightmost permutation braid of P as desired. ¤

Corollary 4. Let α = 〈α0〉n(α1 ⊕ · · · ⊕ αk). Then inf(α) = min{inf(αi); i =
0 or ni > 1} and sup(α) = max{sup(αi); i = 0 or ni > 1}.
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Figure 7. The normal form of a braid with an invariant standard curve

Proposition 5. Let C be a standard curve system and α ∈ Bn such that α ∗ C is
standard.

(1) Let α = ∆rA1 · · ·Al be a (left or right) normal form of α. Then (Ai · · ·Al)∗
C is standard for i = 1, . . . , l.

(2) If α = P−1Q for some P, Q ∈ B+
n with S(P ) ∩ S(Q) = ∅, then Q ∗ C is

standard.
(3) If α = PQ−1 for some P, Q ∈ B+

n with F (P ) ∩ F (Q) = ∅, then Q−1 ∗ C is
standard.

Proof. We may assume that C has only one component, because for β ∈ Bn, β ∗ C
is standard if and only if each component of β ∗ C is standard. In particular, we
assume that C is un-nested, that is, C = Cn for some partition n of n. Then (1)
is immediate from Lemma 1 and Lemma 3. (2) and (3) follow from remark in the
preliminary. ¤

Now we know that if a un-nested standard curve system is invariant under α ∈
Bn, then we can see the standard curves in the normal form. For example, the
braid in Figure 7 has an invariant standard curve system Cn, where n = (2, 1, 1).

Theorem 6. There is an algorithm that decides, given an n-braid α, whether there
exists a standard curve system that is invariant under α, and if there exists, finds
one. The time complexity is O(n3`2), where ` is the word-length of α.

Proof. Given a braid we can compute the right-canonical form α = ∆uA` · · ·A1 in
time O(n log n`2). There are

(
n
2

)
candidates of standard curves invariant under α

and for each candidate, we can check whether it is really invariant in time O(n`) as
follows: Let θi be the induced permutation of Ai. Let [a0, b0] be a set of consecutive
integers. For i = 1, . . . , ` do the followings

(1) Compute the set Si = {θi(a0), . . . , θi(b0)}.
(2) Let ai and bi be the minimum and maximum of the set Si.
(3) If bi − ai = b0 − a0, proceed to i + 1. Otherwise, reject.
(4) Let i = ` + 1. If u is even, accept if a0 = a` and b0 = b`. Otherwise, reject.

If u is odd, accept if a0 = n + 1− b` and b0 = n + 1− a`. Otherwise, reject.

Since the steps (1), (2) and (4) can be done in time linear to n and (3) is repetition
of (2) ` times, we are done. ¤
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Figure 8

Proposition 7. Let C be an essential curve system in Dn (in general, non-standard).
If Pi ∗ C is standard for positive braids Pi, i = 1, 2, then so are (P1 ∧R P2) ∗ C and
(P1 ∨L P2) ∗ C.

Proof. Let R = P1 ∧R P2 and Pi = QiR for i = 1, 2. Let Ci = Pi ∗ C = QiR ∗ C,
i = 1, 2. Since Q−1

1 ∗C1 = R∗C = Q−1
2 ∗C2, (Q1Q

−1
2 )∗C2 = C1. So Q−1

2 ∗C2 = R∗C
is standard.

Now let T = P1 ∨L P2 = S1P1 = S2P2. Since T ∗ C = (SiPi) ∗ C = Si ∗ Ci,
for i = 1, 2, S1 ∗ C1 = S2 ∗ C2. Now (S−1

1 S2) ∗ C2 = C1 and so S2 ∗ C2 = T ∗ C is
standard. ¤

The following corollary answers the question at the beginning.

Corollary 8. Given any curve system C, there exist a unique positive braid P such
that P ∗ C is standard and if Q is another positive braid with Q ∗ C standard, then
Q = RP for some positive braid R.

We close this note with an example. Let C be an essential curve system such
that C = C1 ∪ C2. Let P , P1 and P2 be shortest positive braids that standardize
the curve systems C, C1 and C2 respectively. In this situation we can ask whether
P can be computed directly from P1 and P2. Because P < P1 and P < P2, the
natural candidate is P = P1 ∨L P2, that is the shortest positive braid with the
property P < P1 and P < P2. But it is not true in general. Consider the curve
systems C = C1 ∪ C2 as Figure 9. Then standardizing braid of C1 and C2 are
σ1 and σ3, respectively. But the standardizing braid of C is σ2σ1σ3. Note that
σ2σ1σ3 < σ1 ∨L σ3(= σ1σ3) but the two braids are not equal.
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↙σ1 σ3↘

↘σ2σ3 σ2σ1↙

Figure 9. Standardization of a curve system
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