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ON SEMIALGEBRAIC TRANSFORMATION GROUPS II
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ABSTRACT. We survey some recent developments in semialgebraic transformation group
theory.
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INTRODUCTION

In “On Semialgebraic Transformation Groups I” [25], the authors discussed very shortly
the theory of semialgebraic transformation groups. In this article, as a continuation of [25],
we survey some recent results on equivariant semialgebraic homotopy theory, equivariant
semialgebraic vector bundles and equivariant Whitehead groups of semialgebraicG-sets.
In the final section we treat some problems in Nash transformation group theory.

Recall that a semialgebraicG-set is calledaffine if it is semialgebraicallyG-homeomorphic
to aG-invariant semialgebraic set in some semialgebraic representation space ofG. We re-
member that every semialgebraicG-set is affine whenG is a compact semialgebraic linear
group, see [25, Theorem 4.3] or [24].

1. SEMIALGEBRAIC G-HOMOTOPY THEORY

In this section we discuss semialgebraicG-homotopies of semialgebraicG-maps.
The definition in semialgebraic homotopy theory is similar to that of topological homo-

topy theory, except that topological spaces are replaced by semialgebraic sets and contin-
uous maps by semialgebraic maps. For example, letM andN be semialgebraicG-sets.
Two semialgebraicG-mapsf , g : M → N are said to besemialgebraicallyG-homotopic
if there is a semialgebraicG-mapH : M × I → N such thatH0 = f , H1 = g with trivial
G-action onI. The mapH is called asemialgebraicG-homotopy from f to g. Note that
the intervalI = [0, 1] is semialgebraic.
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A semialgebraicG-subsetA of M is called asemialgebraic strongG-deformation
retract of M if there exists a semialgebraicG-homotopyH : M × I → M such that
H0 = idM andH1 is a retraction fromM to A andH(a, t) = a for all (a, t) ∈ A× I.

Let A be aG-subset of a finiteG-CW complexX. TheG-star of A in X denoted by
StX(A) is the union of all openG-cellsc of X such thatc ∩A 6= ∅. ClearlyStX(A) is an
openG-neighborhood ofA.

Let M be an affine semialgebraicG-set andA a closed semialgebraicG-subset ofM .
We can give a finite openG-CW complex structure(X, {ci | i = 1, . . . , n}) of M com-
patible withA by Theorem 4.2 of [25]. ThenA is a semialgebraic strongG-deformation
retract ofStX′(A) whereX ′ is a barycentric subdivision ofX. Thus we have the follow-
ing.

Proposition 1.1([22]). LetG be a compact semialgebraic group. LetA be a closed semi-
algebraicG-subset of a semialgebraicG-setM . Then there exists aG-invariant semialge-
braic open neighborhoodV = StX′(A) of A in M such thatA is a semialgebraic strong
G-deformation retract ofV .

We know the following: a pair(M, A) of topological spaces has the homotopy extension
property if and only if(A× I)∪ (M ×{0}) is a retract ofM × I. In this caseA is closed.
Moreover anyCW complex pair(X, A) has the homotopy extension property, see [8]. We
have the similar result in the equivariant semialgebraic category as follows.

Theorem 1.2([22]). Let G be a compact semialgebraic group. IfM is a semialgebraic
G-set andA is a closed semialgebraicG-subset ofM , then (A × I) ∪ (M × {0}) is
a semialgebraic strongG-deformation retract ofM × I. In particular, (M, A) has the
semialgebraicG-homotopy extension property.

The above theorem is proved from Proposition 1.1 and the equivariant semialgebraic Urysohn’s
lemma of semialgebraicG-sets ([25, Proposition 3.2]).

Let M be a semialgebraicG-set. We define thecore of a finite openG-CW complex
M ⊂ Ω, denoted byco(M), to be theG-CW subcomplex ofM consisting of all open
G-cells c = Gσ of M which has a compact closure inM . Thenco(M) is the unique
maximal compactG-CW subcomplex ofM . If M is a semialgebraicG-set with theG-
CW complex structure as in Theorem 4.2 of [25], then we haveco(M) = π−1(co(M/G))
whereπ : M → M/G is the orbit map.

Since the star of(co(M)) is M , there exists a semialgebraic strongG-deformation
retractionH : M × I → M from M to co(M) by Proposition 1.1. Moreover, ifA is a
closedG-CW subcomplex ofM then the restrictionrM |A is a semialgebraicG-retraction
from A to co(A). Thus we have the following proposition.

Proposition 1.3([22]). LetM be a semialgebraicG-set. Then there exist a compact semi-
algebraicG-subsetC of M and a semialgebraic strongG-deformation retractR : M ×
I → M such thatR0 = R(·, 0) = idM , R(c, t) = c for all (c, t) ∈ C × I and
R1 = R(·, 1) = r : M → C is a semialgebraicG-retraction.

Moreover the inclusioni : C ↪→ M is a semialgebraicG-homotopy inverse ofr. In partic-
ular,r is a semialgebraicG-homotopy equivalence.

Now we consider the set of semialgebraicG-homotopy classes of semialgebraicG-
maps between two semialgebraicG-sets which are not necessarily compact. Let(M,A)
and(N, B) be two pairs of semialgebraicG-sets. LetC be a semialgebraicG-subset of



ON SEMIALGEBRAIC TRANSFORMATION GROUPS II 105

M and let us fix a semialgebraicG-maph : C → N such thath(C ∩ A) ⊂ B. From now
on we considerG-maps from(M, A) to (N,B) which extendh.

We call any two such semialgebraicG-extensionsf, g : (M,A) → (N,B) of h are
semialgebraicallyG-homotopic relative toC if there exists a semialgebraicG-homotopy
H : (M × I,A × I) → (N, B) such thatH0 = f , H1 = g andH(c, t) = h(c) for
(c, t) ∈ C × I.

Let [(M, A), (N, B)]G,h
sem (resp. [(M, A), (N,B)]G,h

top ) denote the set of relative semi-
algebraic (resp. topological)G-homotopy classes of semialgebraic (resp. continuous)G-
maps from(M,A) to (N, B) which extendh. We have a canonical map

µ : [(M, A), (N, B)]G,h
sem → [(M,A), (N, B)]G,h

top

which sends the semialgebraicG-homotopy class[f ]sem of a semialgebraicG-mapf to
the topologicalG-homotopy class[f ]top of f . Then we have the followingcomparison
theorem for G-maps.

Theorem 1.4([22]). Let G be a compact semialgebraic group. Let(M, A) and (N, B)
be pairs of affine semialgebraicG-sets. IfA andC are closed semialgebraicG-subsets of
M andh : (C, C ∩ A) → (N, B) is a semialgebraicG-map then the canonical mapµ is
bijective.

It is proved by the equivariant semialgebraic homotopy extension property (Theorem 1.2)
and the equivariant semialgebraic Uryshon’s lemma ([25, Proposition 3.2]). Theorem 1.4
implies that any topologicalG-homotopy class of a continuousG-map between two affine
semialgebraicG-sets can be represented by a semialgebraicG-map. As a corollary of
Theorem 1.4, we have the semialgebraic version of theTietze-Gleason extension theorem
([2, I.2.3]) as follows.

Corollary 1.5 ([24]). LetG be a compact semialgebraic group. LetM be an affine semi-
algebraicG-set. LetΩ be a semialgebraicG-representation space with underlying space
Rn. Let C be a closed semialgebraicG-subset ofM and h : C → Ω a semialgebraic
G-map. Then there exists a semialgebraicG-extensionf : M → Ω of h.

2. SEMIALGEBRAIC G-VECTOR BUNDLES

In this section we discuss semialgebraicG-vector bundles over semialgebraicG-sets.
The definition of a semialgebraic vector bundle is similar to that of a topological vector
bundle, see [1]. We remark that the total space of a semialgebraic vector bundle, in the
definition of it (see, [1, p.332]), is not a semialgebraic set but a semialgebraic space. But,
since every (nonequivariant) semialgebraic vector bundle has a semialgebraic classifying
map (see, [1, Corollary 12.7.5]), we can view the total space is also a semialgebraic set.

Let G be a semialgebraic group. AG-vector bundleξ = (E, p, M) is asemialgebraic
G-vector bundle if

(a) E andM are semialgebraicG-sets.
(b) p : E → M is a semialgebraicG-map, andg sendsE|x to E|gx linearly for all

g ∈ G.
(c) (E, p, M) is a semialgebraic vector bundle when we forget the action.

If ξ andξ′ are two semialgebraicG-vector bundles over an affine semialgebraicG-set
M , thenξ ⊕ ξ′, ξ ⊗ ξ′, Hom(ξ, ξ′) and the dual bundleξ∨ are semialgebraicG-vector
bundles overM . If f : M → N is a semialgebraicG-map between two semialgebraic
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G-sets andξ is a semialgebraicG-vector bundle overN , the pull-backf∗(ξ) is also a
semialgebraicG-vector bundle overM .

Let Ω be an orthogonal semialgebraic representation space of a semialgebraic groupG
with underlying vector spaceRn. Then the grassmanian manifoldG(Ω, k) is a nonsingular
algebraicG-variety and thus a NashG-manifold. In particular,G(Ω, k) is an affine semial-
gebraicG-set. Moreover the universal bundleγ(Ω, k) overG(Ω, k) is a strongly algebraic
G-vector bundle and thus a strongly semialgebraicG-vector bundle.

Theorem 2.1([3]). Letξ be a semialgebraicG-vector bundle over an affine semialgebraic
G-set M . Then there exists a semialgebraicG-map f : M → G(Ω, k) such thatξ is
semialgebraicallyG-isomorphic tof∗(γ(Ω, k)) for someΩ andk.

Theorem 2.1 says that every semialgebraicG-vector bundle over an affine semialgebraic
G-set is strongly semialgebraic.

Now we compare the set of semialgebraicG-isomorphism classes of semialgebraicG-
vector bundles with that of topological isomorphism classes of topologicalG-vector bun-
dles over a semialgebraicG-set.

Let G be a compact semialgebraic group and letM be a semialgebraicG-set. The set
Vectsem

G (M) (resp.Vecttop
G (M)) denotes the set of semialgebraic (resp. topological)G-

isomorphism classes of semialgebraic (resp. topological)G-vector bundles overM . We
have the canonical map

κ : Vectsem
G (M) → Vecttop

G (M)

which sends the semialgebraicG-isomorphism classes[ξ]sem of a semialgebraicG-vector
bundleξ overM to the topologicalG-isomorphism class[ξ]top of ξ.

Then we have the followingcomparison theorem forG-vector bundles.

Theorem 2.2 ([3]). Let G be a compact semialgebraic group and letM be an affine
semialgebraicG-set. Then the canonical mapκ is bijective.

As an application of the comparison theorem forG-vector bundles, we have the follow-
ing corollary.

Corollary 2.3 ([3]). Letξ andη be semialgebraicG-vector bundles over an affine semial-
gebraicG-set. Ifξ ∼=top

G η thenξ ∼=sem
G η.

As another application of Theorem 2.2, we have the equivariant semialgebraic version
of the covering homotopy property for semialgebraicG-vector bundles as follows.

Corollary 2.4 ([3]). Letf , h : M → N be semialgebraicG-maps between semialgebraic
G-sets. Letξ be a semialgebraicG-vector bundle overN . If M is affine andf is G-
homotopic toh, then the pull-back bundlesf∗(ξ) and h∗(ξ) are semialgebraicallyG-
isomorphic.

3. EQUIVARIANT WHITEHEAD GROUPS OF SEMIALGEBRAICG-SETS

The notion of simple homotopy and Whitehead torsion have been generalized to the
equivariant case in topological category, see [9].

In this section we consider the equivariant generalizations of them to the semialgebraic
category. Namely, we define the equivariant Whitehead group of a semialgebraicG-set
and the Whitehead torsion of aG-homotopy equivalence between semialgebraicG-sets.
Moreover, we prove the semialgebraic invariance of the equivariant Whitehead torsion.
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The basic ingredients for the development are the existence of equivariant semialgebraic
G-CW complex structure of a semialgebraicG-set [25, 21, 24] and equivariant semialge-
braic homotopy theory introduced in Section 1. By Theorem 4.2 of [25], any semialgebraic
G-setM has a (finite open) semialgebraicG-CW complex structureX. We remark that the
(equivariant) Whitehead group is defined on a compact (G-)CW complex [9, 17]. How-
ever, in general, a semialgebraicG-set has a finite openG-CW complex structure which
may not be compact.

Recall that thecoreof X, denoted byco(X), is a maximal compactG-CW subcomplex
of X. It is shown, in Section 1, that there exists a semialgebraicG-retractrX : X →
co(X) such that the inclusion mapiX : co(X) ↪→ X is the semialgebraicG-homotopy
inverse ofrX . Sinceco(X) is a compactG-CW complex, the equivariant Whitehead
groupWhG(co(X)) can be defined as in [9]. We define the equivariant Whitehead group
of a semialgebraicG-setM to be

WhG(M) := WhG(co(X0))

whereX0 is a preferred semialgebraicG-CW complex structure onM . Let X be another
semialgebraic openG-CW complex structure onM . For simplicity let us assume that both
X andX0 have the same underlying topological spaceM . LetλX

X0
denote the composition

co(X)
iX
↪→ X = X0

rX0→ co(X0).

ThenλX
X0

induces an isomorphism

(λX
X0

)∗ : WhG(co(X)) → WhG(co(X0)),

which shows that the definition ofWhG(M) is independent of the choice of a semialge-
braic openG-CW complex structure onM .

For a G-homotopy equivalencef : M → N between two semialgebraicG-sets we
define the Whitehead torsionτG(f) of f to be an element inWhG(M) as follows: Choose
any semialgebraic openG-CW complex structuresX andY on M andN , respectively.
Put f̃ = rY ◦ f ◦ iX : co(X) → co(Y ). ThenτG(f̃) ∈ WhG(co(X)). We defineτG(f)
by

τG(f) = (λX
X0

)∗(τG(f̃)) ∈ WhG(M).
Then such defined Whitehead torsion is well-defined, i.e., independent of the choice of

semialgebraic openG-CW complex structures, and is aG-equivariant topological prop-
erty. Namely we have the following theorem.

Theorem 3.1([23]). Let M and N be affine semialgebraicG-sets. For aG-homotopy
equivalencef : M → N there is a well-defined Whitehead torsionτG(f) ∈ WhG(M)
and iff is a semialgebraicG-homeomorphism thenτG(f) = 0.

Notice that the topological invariance of the Whitehead torsion does not hold in the equi-
variant case, see Examples I.4.25 and I.4.26 in [17]. Recently, S. Illman proved a similar
result in [12] for smooth Lie group (not necessarily compact) actions on proper smooth
G-manifolds, which are not necessarily compact but the orbit spaces are compact. That
the orbit spaces are compact is used essentially in [12]. On the other hand in Theorem 3.1
(and Theorem 3.2) the acting groups are compact but the semialgebraicG-sets and their
orbit spaces are not necessarily compact.

In this section we also discuss the restriction homomorphism in the semialgebraic cate-
gory with the preferred Whitehead group. We first discuss the operation of restricting the
compact (topological) groupG to a closed subgroupH of G. Let X be a compactG-CW
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complex and consider the induced action ofH onX. Note that theH-spaceX does not in
general inherit an inducedH-CW complex structure, at least not in any natural way, see
[10] for an example. However, given a compactG-CW complexX and a closed subgroup
H of a compact Lie groupG, one can always construct anH-CW complexRH X with the
sameH-homotopy type as theH-spaceX. Moreover, this can be done in such a way that
the functor takingX to RH X preserves the topological dimension and theH-orbit types
occurring inRH X are exactly the same ones as inX, see [10]. We callRH X apreferred
H-reduction of X.

In the case whenX is a semialgebraicG-CW complex structure on a semialgebraic
G-setM , one can always construct a semialgebraicH-CW complex structureIH X of
H-spaceX such that eachG-equivariant cell ofX is anH-subcomplex ofIH X. We
call IH X an identity H-reduction of X. Let Y denote the union of (open)G-cells of
IH X which are contained in| co(X)|. ThenY is a compactH-CW subcomplex ofIH X
with the underlying space| co(X)|, and henceY is a semialgebraicH-CW structure on
| co(X)| = | co(X) ∩ IH X|. Moreoverco(X), RH(co(X)) andco(IH X) have the same
H-homotopy type. In particularY is a preferredH-reduction ofG-CW complexco(X),
and thus we denoteY by RH(co(X)). Hence, becauseco(X) is compact, there is the
restriction homomorphismResG

H : WhG(co(X)) → WhH(RH(co(X))) by [10, 11]. We
are now able to define the restriction homomorphism

ResG
H : WhG(co(X))

ResG
H→ WhH(RH(co(X)))

(iX)∗→ WhH(co(IHX))

byResG
H = (iX)∗◦ResG

H , whereiX : RH(co(X)) = co(X) ↪→ co(IHX) is the inclusion
map. By using the properties ofResG

H with the fact that we define the Whitehead group
WhG(M) of a semialgebraicG-set byWhG(co(X)) for arbitrarily semialgebraicG-CW
complex structure onM , we prove the following.

Theorem 3.2 ([23]). Let G be a compact semialgebraic group, andK < H < G be
closed semialgebraic subgroups ofG. LetM be a semialgebraicG-set, then there exists a
well-defined restriction homomorphism

ResG
H : WhG(M) → WhH(M).

Moreover we have that iff : M → N is aG-homotopy equivalence between semialgebraic
G-sets, andfH : M → N denotes the inducedH-homotopy equivalence, then

τH(fH) = ResG
H(τG(f)) ∈ WhH(M).

Furthermore, we haveResG
K = ResH

K ◦ ResG
H .

Remark thatResG
H = ResG

H whenM is compact.

4. PROBLEMS ONNASH G-MANIFOLDS

In this section we treat some problems in Nash transformation group theory. The Nash
category lies between the nonsingular algebraic category and the smooth category (in fact,
analytic category).

Recall that a smooth submanifold ofRn is called aNash manifold in Rn if it is a
semialgebraic set inRn. Some times many people call a Nash manifold inRn an affine
Nash manifold. So, in this section, all Nash manifolds are affine. A map between two
Nash manifolds is calledNash if it is a semialgebraic map of the classC∞. We remark
that a Nash manifold and a Nash map are automatically of the classCω (analytic). The



ON SEMIALGEBRAIC TRANSFORMATION GROUPS II 109

equivariant Nash terminologies are defined similarly to the equivariant semialgebraic case.
Throughout this sectionG denotes a compact Nash group.

As an equivariant smooth embedding theorem we have the following equivariant Nash
embedding problem.

Problem 4.1. Can every NashG-manifold be NashG-embedded into some finite dimen-
sional Nash representation space ofG?

We give some of the results related to the equivariant embedding problem. Equivariant
embedding problems of theG-space in the given category have been studied by many
people as follows.

Category Reference

Smooth Mostow [19] and Palais [20]
Analytic Matumoto and Shiota [18], Kankaanrita [14]
Algebraic [16], [26]

Semialgebraic Park and Suh [24]
Nash ?

There are some results about Problem 4.1 in some case as follows; a NashG-manifold
M is NashG-diffeomorphic to aG-invariant Nash submanifold of some Nash representa-
tion space ofG if M is compact or compactifiable as a NashG-manifold.

Thus Problem 4.1 is reduced to the following equivariant Nash compactifiable problem.

Problem 4.2. Is every NashG-manifold compactifiable as a NashG-manifold?

In nonequivariant case, for each noncompact Nash manifoldM , there exists a compact
Nash manifold with boundary whose interior is Nash diffeomorphic toM [27].

Another question is whether a given smooth situation be Nash realized.

Problem 4.3. When a given smoothG-manifold isG-diffeomorphic to a NashG-manifold?

There are some results about this problem in the equivariant algebraic case. Recall that
every algebraicG-variety is a NashG-manifold.

Proposition 4.4. A closedG-manifold isG-diffeomorphic to a nonsingular algebraicG-
variety if one of the following assumption holds.

(1) G = 1 (see,[13]).
(2) G is the product of a group of odd order and2-torus([5], [7]).
(3) G is finite abelian with cyclic2-Sylow subgroup orG is S1.
(4) The action ofG on the manifold is semifree([5]).
(5) The manifold is of dimension2 ([4], [15]).
(6) The manifold isG-cobordant to a nonsingular algebraic variety([6]).
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