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INTRODUCTION

In “On Semialgebraic Transformation Groups I" [25], the authors discussed very shortly
the theory of semialgebraic transformation groups. In this article, as a continuation of [25],
we survey some recent results on equivariant semialgebraic homotopy theory, equivariant
semialgebraic vector bundles and equivariant Whitehead groups of semialg&ksais.

In the final section we treat some problems in Nash transformation group theory.

Recall that a semialgebraié-set is calledffineif it is semialgebraicallyz-homeomorphic
to aG-invariant semialgebraic set in some semialgebraic representation spgacevefre-
member that every semialgebraieset is affine wheidr is a compact semialgebraic linear
group, see [25, Theorem 4.3] or [24].

1. SEMIALGEBRAIC G-HOMOTOPY THEORY

In this section we discuss semialgebraihomotopies of semialgebraig-maps.

The definition in semialgebraic homotopy theory is similar to that of topological homo-
topy theory, except that topological spaces are replaced by semialgebraic sets and contin-
uous maps by semialgebraic maps. For examplelleind N be semialgebrai¢i-sets.

Two semialgebrai&-mapsf, g: M — N are said to beemialgebraicallyG-homotopic
if there is a semialgebraiG-mapH : M x I — N suchthatd, = f, H; = g with trivial

G-action onl. The mapH is called asemialgebraicG-homotopy from f to g. Note that
the intervall = [0, 1] is semialgebraic.
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A semialgebraidz-subsetA of M is called asemialgebraic strongG-deformation
retract of M if there exists a semialgebrate-homotopyH: M x I — M such that
Hy =idps and H, is a retraction fromV/ to A andH (a,t) = a for all (a,t) € A x I.

Let A be aG-subset of a finit&z-CW complexX. TheG-star of A in X denoted by
Stx (A) is the union of all operd-cellsc of X such that N A # (). ClearlyStx (A) is an
openG-neighborhood ofd.

Let M be an affine semialgebrafg-set andA a closed semialgebra{@-subset of)M.
We can give a finite ope&-CW complex structuréX, {c; | i = 1,...,n}) of M com-
patible with A by Theorem 4.2 of [25]. Thed is a semialgebraic strong-deformation
retract ofStx/(A) where X’ is a barycentric subdivision of. Thus we have the follow-

ing.

Proposition 1.1([22]). LetG be a compact semialgebraic group. L&be a closed semi-
algebraicG-subset of a semialgebradg-set)M. Then there exists @-invariant semialge-
braic open neighborhool” = St/ (A4) of A in M such thatA is a semialgebraic strong
G-deformation retract of/.

We know the following: a paif)M, A) of topological spaces has the homotopy extension
property if and only if( A x I) U (M x {0}) is a retract ofMf x I. In this cased is closed.
Moreover anyCW complex pair{ X, A) has the homotopy extension property, see [8]. We
have the similar result in the equivariant semialgebraic category as follows.

Theorem 1.2([22]). Let G be a compact semialgebraic group. M is a semialgebraic
G-set andA is a closed semialgebrai€-subset ofM, then(A x I) U (M x {0}) is
a semialgebraic strong--deformation retract ofd/ x I. In particular, (M, A) has the
semialgebraidz-homotopy extension property.

The above theorem is proved from Proposition 1.1 and the equivariant semialgebraic Urysohn’s
lemma of semialgebrai€@-sets ([25, Proposition 3.2]).

Let M be a semialgebrai€G-set. We define theore of a finite openG-CW complex
M cC Q, denoted byco(M), to be theG-CW subcomplex of\ consisting of all open
G-cellsc = Go of M which has a compact closure M. Thenco(M) is the unique
maximal compactG-CW subcomplex of\. If M is a semialgebrai¢/-set with theG-
CW complex structure as in Theorem 4.2 of [25], then we hané/) = 7~ (co(M/G))
whererr: M — M/G is the orbit map.

Since the star ofco(M)) is M, there exists a semialgebraic stroGgdeformation
retractionH: M x I — M from M to co(M) by Proposition 1.1. Moreover, ifl is a
closedG-CW subcomplex of\/ then the restrictiom,/| 4 is a semialgebrai&-retraction
from A to co(A). Thus we have the following proposition.

Proposition 1.3([22]). Let M be a semialgebrai&-set. Then there exist a compact semi-
algebraic G-subsetC' of M and a semialgebraic stron¢f-deformation retractR: M x

I — M such thatRy = R(-,0) = idy, R(c,t) = ¢ for all (¢,t) € C x I and
Ry = R(,1) =r: M — C'is a semialgebraic-retraction.

Moreover the inclusion: C' — M is a semialgebrai€’-homotopy inverse of. In partic-
ular,r is a semialgebrai€’-homotopy equivalence.

Now we consider the set of semialgebréaiehomotopy classes of semialgebraic
maps between two semialgebrdicsets which are not necessarily compact. (et A)
and (N, B) be two pairs of semialgebra@-sets. LetC be a semialgebrai€-subset of
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M and let us fix a semialgebrafé-maph: C' — N such that.(C' N A) C B. From now
on we considefz-maps from(M, A) to (N, B) which extendh.

We call any two such semialgebrai¢-extensionsf,g: (M, A) — (N, B) of h are
semialgebraicallyG-homotopic relative to C if there exists a semialgebrait-homotopy
H: (M xI,AxI)— (N,B)suchthatdy, = f, H = gandH(c,t) = h(c) for
(c,t) e Cx I.

Let [(M, A), (N, B)|S! (resp. [(M, A), (N, B)}g’ph) denote the set of relative semi-
algebraic (resp. topologicaly-homotopy classes of semialgebraic (resp. continuGlis)
maps from(M, A) to (N, B) which extendh. We have a canonical map

w: [(MvA)7(N7B)]G7h - [(JVLA)v(N?B)]G)h

sem top

which sends the semialgebraizhomotopy clas$f]s... of a semialgebraic-map f to
the topologicalG-homotopy clas$f].,, of f. Then we have the followingomparison
theorem for G-maps

Theorem 1.4([22]). Let G be a compact semialgebraic group. L@/, A) and (N, B)
be pairs of affine semialgebrafe-sets. IfA and C are closed semialgebraiG-subsets of
M andh: (C,C N A) — (N, B) is a semialgebrai¢-map then the canonical mapis
bijective.

It is proved by the equivariant semialgebraic homotopy extension property (Theorem 1.2)
and the equivariant semialgebraic Uryshon’s lemma ([25, Proposition 3.2]). Theorem 1.4
implies that any topologicak-homotopy class of a continuotdsmap between two affine
semialgebraidz-sets can be represented by a semialgebraimap. As a corollary of
Theorem 1.4, we have the semialgebraic version ofteize-Gleason extension theorem

([2, 1.2.3]) as follows.

Corollary 1.5 ([24]). LetG be a compact semialgebraic group. gt be an affine semi-
algebraicG-set. Let() be a semialgebraié-representation space with underlying space
R™. LetC be a closed semialgebraiG-subset ofA/ andh: C — € a semialgebraic
G-map. Then there exists a semialgebr@iextensionf: M — Q of h.

2. SEMIALGEBRAIC G-VECTOR BUNDLES

In this section we discuss semialgebrélevector bundles over semialgebraitsets.
The definition of a semialgebraic vector bundle is similar to that of a topological vector
bundle, see [1]. We remark that the total space of a semialgebraic vector bundle, in the
definition of it (see, [1, p.332]), is not a semialgebraic set but a semialgebraic space. But,
since every (nonequivariant) semialgebraic vector bundle has a semialgebraic classifying
map (see, [1, Corollary 12.7.5]), we can view the total space is also a semialgebraic set.

Let G be a semialgebraic group. &-vector bundle& = (E, p, M) is asemialgebraic
G-vector bundleif

(8) £ andM are semialgebrai€-sets.

(b) p: E — M is a semialgebrai¢;-map, andg sendsE|, to E|,, linearly for all
g €aqG.

(c) (E,p, M) is a semialgebraic vector bundle when we forget the action.

If £ and¢’ are two semialgebrai€-vector bundles over an affine semialgebr@iset
M, thené @ ¢, £ ® ¢, Hom(¢,¢') and the dual bundl€Y are semialgebrai6-vector
bundles ovetM. If f: M — N is a semialgebrai&;-map between two semialgebraic
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G-sets andf is a semialgebrai¢-vector bundle overV, the pull-backf*(¢) is also a
semialgebraic-vector bundle over/.

Let 2 be an orthogonal semialgebraic representation space of a semialgebrai¢:group
with underlying vector spad@™. Then the grassmanian manifdil(2, k) is a nonsingular
algebraiaG-variety and thus a Nash-manifold. In particularG(Q, k) is an affine semial-
gebraicG-set. Moreover the universal bund}é), k) overG(£2, k) is a strongly algebraic
G-vector bundle and thus a strongly semialgeb¢aigector bundle.

Theorem 2.1([3]). Let¢ be a semialgebrai&-vector bundle over an affine semialgebraic
G-set M. Then there exists a semialgebraitmap f: M — G(Q, k) such that¢ is
semialgebraicallyG-isomorphic tof*(v(£, k)) for some2 and k.

Theorem 2.1 says that every semialgebéaicector bundle over an affine semialgebraic
G-set is strongly semialgebraic.

Now we compare the set of semialgebr&idgsomorphism classes of semialgebréie
vector bundles with that of topological isomorphism classes of topologleactor bun-
dles over a semialgebrade-set.

Let G be a compact semialgebraic group andiMéte a semialgebrai€-set. The set
Vectg ™ (M) (resp.VecttG"p(M)) denotes the set of semialgebraic (resp. topologiGal)
isomorphism classes of semialgebraic (resp. topolog@alkector bundles oveis. We
have the canonical map

#: Vecti™ (M) — Vect? (M)

which sends the semialgebraicisomorphism classg§];.., of a semialgebrai&-vector
bundle¢ over M to the topologicalz-isomorphism clasg]:,, of &.
Then we have the followingomparison theorem for G-vector bundles

Theorem 2.2([3]). Let G be a compact semialgebraic group and Iet be an affine
semialgebraid7-set. Then the canonical mapis bijective.

As an application of the comparison theoremdbrector bundles, we have the follow-
ing corollary.

Corollary 2.3 ([3]). Let& andn be semialgebrai¢-vector bundles over an affine semial-
gebraicG-set. If¢ =3P y theng 22g™ 1.

As another application of Theorem 2.2, we have the equivariant semialgebraic version
of the covering homotopy property for semialgebr@iwector bundles as follows.

Corollary 2.4 ([3]). Letf, h: M — N be semialgebrai¢&G-maps between semialgebraic
G-sets. Let be a semialgebraici-vector bundle overtV. If M is affine andf is G-
homotopic toh, then the pull-back bundleg*(£) and h*(£) are semialgebraicallyG-
isomorphic.

3. EQUIVARIANT WHITEHEAD GROUPS OF SEMIALGEBRAIQG-SETS

The notion of simple homotopy and Whitehead torsion have been generalized to the
equivariant case in topological category, see [9].

In this section we consider the equivariant generalizations of them to the semialgebraic
category. Namely, we define the equivariant Whitehead group of a semialgébgat
and the Whitehead torsion of@-homotopy equivalence between semialgebtzisets.
Moreover, we prove the semialgebraic invariance of the equivariant Whitehead torsion.
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The basic ingredients for the development are the existence of equivariant semialgebraic
G-CW complex structure of a semialgebraieset [25, 21, 24] and equivariant semialge-
braic homotopy theory introduced in Section 1. By Theorem 4.2 of [25], any semialgebraic
G-setM has a (finite open) semialgebrd@icCW complex structuré’. We remark that the
(equivariant) Whitehead group is defined on a compact (&) complex [9, 17]. How-
ever, in general, a semialgebraitset has a finite ope@-CW complex structure which
may not be compact.

Recall that theore of X, denoted by.o(X), is a maximal compact-CW subcomplex
of X. Itis shown, in Section 1, that there exists a semialgebtaretractry: X —
co(X) such that the inclusion majx : co(X) — X is the semialgebrai&-homotopy
inverse ofrx. Sinceco(X) is a compaciG-CW complex, the equivariant Whitehead
groupWhg (co(X)) can be defined as in [9]. We define the equivariant Whitehead group
of a semialgebrai&’-set M to be

Whe (M) := Whe(co(Xo))

where X is a preferred semialgebraie-CW complex structure ot/. Let X be another
semialgebraic ope@-CW complex structure on/. For simplicity let us assume that both
X and X, have the same underlying topological spMeLet)\§0 denote the composition

co(X) XX = Xo =0 co(Xp).
Then)g, induces an isomorphism
(Ax,)«: Whg(co(X)) — Whe(co(Xo)),

which shows that the definition 8Vhq (M) is independent of the choice of a semialge-
braic openz-CW complex structure o/

For a G-homotopy equivalencg¢: M — N between two semialgebraie-sets we
define the Whitehead torsiog;(f) of f to be an element ifWhg (M) as follows: Choose
any semialgebraic ope@E-CW complex structure( andY on M and N, respectively.
Putf =ry o foix: co(X) — co(Y). Thenrg(f) € Whe(co(X)). We definerg(f)
by

6(f) = (A%,)«(76(f)) € Whe(M).

Then such defined Whitehead torsion is well-defined, i.e., independent of the choice of
semialgebraic opetr-CW complex structures, and is@-equivariant topological prop-
erty. Namely we have the following theorem.

Theorem 3.1([23]). Let M and N be affine semialgebrai€’-sets. For aG-homotopy
equivalencef: M — N there is a well-defined Whitehead torsien(f) € Whg (M)
and if f is a semialgebrai¢z-homeomorphism thery; (f) = 0.

Notice that the topological invariance of the Whitehead torsion does not hold in the equi-
variant case, see Examples 1.4.25 and 1.4.26 in [17]. Recently, S. lllman proved a similar
result in [12] for smooth Lie group (nhot necessarily compact) actions on proper smooth
G-manifolds, which are not necessarily compact but the orbit spaces are compact. That
the orbit spaces are compact is used essentially in [12]. On the other hand in Theorem 3.1
(and Theorem 3.2) the acting groups are compact but the semialgébsats and their

orbit spaces are not necessarily compact.

In this section we also discuss the restriction homomorphism in the semialgebraic cate-
gory with the preferred Whitehead group. We first discuss the operation of restricting the
compact (topological) grou@ to a closed subgroufl of G. Let X be a compadtz-CW
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complex and consider the induced actiortbbn X . Note that the-spaceX does not in
general inherit an induced-CW complex structure, at least not in any natural way, see
[10] for an example. However, given a comp&tCW complexX and a closed subgroup
H of a compact Lie groug, one can always construct &-CW complexR g X with the
sameH -homotopy type as th&-spaceX . Moreover, this can be done in such a way that
the functor takingX to Ry X preserves the topological dimension and fherbit types
occurring inR g X are exactly the same ones asinsee [10]. We calRy X apreferred
H-reduction of X.

In the case wherX is a semialgebrai&-CW complex structure on a semialgebraic
G-set M, one can always construct a semialgebdicCW complex structurdy X of
H-spaceX such that eacldz-equivariant cell ofX is an H-subcomplex ofigy X. We
call Iy X anidentity H-reduction of X. LetY denote the union of (operfy-cells of
Iz X which are contained ifco(X)|. ThenY is a compac#-CW subcomplex ol X
with the underlying spacgco(X)|, and henc&” is a semialgebrai¢/-CW structure on
|co(X)| = |co(X) NIy X|. Moreoverco(X), Ry (co(X)) andco(Iyz X) have the same
H-homotopy type. In particulaY” is a preferredd-reduction ofG-CW complexco(X),
and thus we denot® by Ry (co(X)). Hence, becauser(X) is compact, there is the
restriction homomorphisRes$ : Whe(co(X)) — Why (Ra(co(X))) by [10, 11]. We
are now able to define the restriction homomorphism

G ;
Res$: Whe(co(X)) " Whir(Ry(co(X))) "X Why (co(Ix X))
by Res$ = (ix).oRes$, whereiy : Ry (co(X)) = co(X) < co(Ix X) is the inclusion
map. By using the properties aresg with the fact that we define the Whitehead group
Whe (M) of a semialgebraiéi-set byWhe (co(X)) for arbitrarily semialgebraicz-CW
complex structure o/, we prove the following.

Theorem 3.2([23]). Let G be a compact semialgebraic group, ahd < H < G be
closed semialgebraic subgroups@f Let M be a semialgebrai¢-set, then there exists a
well-defined restriction homomorphism

Res$: Whe(M) — Why (M).

Moreover we have that jf: M — N is aG-homotopy equivalence between semialgebraic
G-sets, andfy : M — N denotes the inducef-homotopy equivalence, then

1 (fir) = Res$ (ta(f)) € Why (M).

Furthermore, we havRes§ = Resfl o Res$.

Remark thaRes& = Res$ whenM is compact.

4. PROBLEMS ONNASH G-MANIFOLDS

In this section we treat some problems in Nash transformation group theory. The Nash
category lies between the nonsingular algebraic category and the smooth category (in fact,
analytic category).

Recall that a smooth submanifold B is called aNash manifold in R™ if it is a
semialgebraic set iR™. Some times many people call a Nash manifoldRih an affine
Nash manifold. So, in this section, all Nash manifolds are affine. A map between two
Nash manifolds is calletlashif it is a semialgebraic map of the clags°. We remark
that a Nash manifold and a Nash map are automatically of the €taganalytic). The
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equivariant Nash terminologies are defined similarly to the equivariant semialgebraic case.
Throughout this sectioty denotes a compact Nash group.

As an equivariant smooth embedding theorem we have the following equivariant Nash
embedding problem.

Problem 4.1. Can every Nasli;-manifold be Nashz-embedded into some finite dimen-
sional Nash representation space-af

We give some of the results related to the equivariant embedding problem. Equivariant
embedding problems of th@-space in the given category have been studied by many
people as follows.

] Category | Reference \
Smooth Mostow [19] and Palais [20]
Analytic Matumoto and Shiota [18], Kankaanrita [14]

Algebraic [16], [26]
Semialgebraic Park and Suh [24]
Nash ?

There are some results about Problem 4.1 in some case as follows; @&MNaahifold
M is NashG-diffeomorphic to aG-invariant Nash submanifold of some Nash representa-
tion space of5 if M is compact or compactifiable as a Naskmanifold.

Thus Problem 4.1 is reduced to the following equivariant Nash compactifiable problem.

Problem 4.2. Is every Nashz-manifold compactifiable as a Naghmanifold?

In nonequivariant case, for each noncompact Nash manifblthere exists a compact
Nash manifold with boundary whose interior is Nash diffeomorphid#¢27].

Another question is whether a given smooth situation be Nash realized.
Problem 4.3. When a given smoot&y-manifold isG-diffeomorphic to a Nasliy-manifold?

There are some results about this problem in the equivariant algebraic case. Recall that
every algebraici-variety is a Nasltz-manifold.

Proposition 4.4. A closedG-manifold isG-diffeomorphic to a nonsingular algebraie-
variety if one of the following assumption holds.

(1) G =1 (see[13]).

(2) G is the product of a group of odd order aetorus([5], [7]).

(3) G is finite abelian with cycli@-Sylow subgroup o€ is S*.

(4) The action ofZ on the manifold is semifrgg5]).

(5) The manifold is of dimensidnh([4], [15]).

(6) The manifold ig57-cobordant to a nonsingular algebraic variet]).
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