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ON REACTION-DIFFUSION EQUATIONS IN POPULATION
DYNAMICS

INKYUNG AHN

Abstract. In this survey article, we provide some basic population models
and state positive coexistence results for such models. Then certain biological
models with self-cross diffusion rates are introduced.

In this expository article, we represent various model from ODE systems to
reaction-diffusion equations in population dynamics. First, we begin with the mo-
tivation of basic models with constant diffusions and linear growth rates to present
the population dynamics. Then, after we discuss the existence results for the sys-
tems with the nonlinear growth rates, the system with self-cross diffusions will be
introduced from the point of view of steady states. We will focus on the existence
of positive solutions to the models.

To describe the interaction between two species or chemicals, one of the earliest
models used was the Lotka-Volterra ODE. The following logistic model, which
allows for the limited resources and environmental reactions, is such a model.




du

dt
= u(a− bu± cv)

dv

dt
= v(e− fv ± gv).

Here u and v are densities of two interacting species or chemicals and the con-
stants a, b, c, e, f and g are all positive.

In ODE models it is assumed that the population or chemicals are uniformly
distributed over the spatial region of interest. However, it is natural to expect a
higher or lower concentration of species will occur at different locations due to the
availability of water and food. Such concentrations have given rise to reaction-
diffusion models, such as

(1)





∂u

∂t
= d1∆u + u(a− bu± cv)

∂v

∂t
= d2∆ + v(e− fv ± gv), in Ω×R+.

The positive constants d1 and d2 are the rates of diffusion of the two population
or chemicals, and Ω is a bounded open region in Rn with smooth boundary ∂Ω.

A great amount of studies has been achieved relating to the system (1); Some
results can be found; Blat and Brown[1], Dancer[3] for predator-prey interac-
tion model; Pao[12], Korman and Leung[4], McKenna and Walter[9], Cosner and
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Lazer[2] for competition model; For symbiotic model, Korman and Leung[4], McKenna
and Walter[9].

The following Kolmogorov model allows nonlinear interaction rates.

(2)
{ −d1∆u = uM(u, v)
−d2∆v = vN(u, v), in Ω.

These equations have been used to model the three classical ecological inter-
actions of two living species: predator-prey, competition, and symbiosis, where
different modes of interaction are determined by the sign of Mv and Nu as follows:

(i) Predator-prey, Mv < 0, Nu > 0. Here u is the prey v is the predator.
(ii) Competition, Mv < 0, Nu < 0.
(iii) Symbiosis, Mv > 0, Nu > 0.
We also have the additional restrictions of Mu, Nv < 0, due to the limited

resources, i.e., the environment can only support up to a certain number of each
species.

We say that the system (2) has a positive solution (u, v) if u(x) > 0 and v(x) > 0
for all x ∈ Ω. The existence of a positive solution (u, v) to system (2) is called a
positive coexistence. Positive coexistence has important implications to the long
term behavior of the biological system under investigation. One of the basic ques-
tions regarding the interacting system (2) is the following: can the coexistence be
predicted using the information on the individual behaviors of the two species? Let
us denote by u0, v0 the densities of the two species with their partner or rival in
absence. Thus u0, v0 represent the individual behaviors of u, v before their partic-
ipation into the interaction. One answer to the above question has been supplied
by extensive work in last twenty years: for predation and competition models un-
der homogeneous Dirichlet or Robin boundary conditions, the existence of positive
solutions to the system (2) is closely related to the sign of λ1(∆ + M(0, v0)) and
λ1(∆ + N(u0, 0)). The principal eigenvalues of two differential operators obtained
from linearizing system (2) at (u0, 0) and at (0, v0), respectively. These results re-
flect the fact that the positive coexistence depends on the data u0, v0 for a given
domain on which the interaction takes place.

In [5], Li gave necessary and sufficient conditions for the existence of positive
solutions of steady states for predator-prey system under Dirichlet boundary con-
ditions on Ω in Rn for d1 = 1, N(u, v) = g(u)−m(v).

Throughout this article, λ1 denote the principal eigenvalue of −∆ under homo-
geneous boundary conditions.

Theorem 1. If m 6≡ 0, then the positive solution (u, v) has a priori bounds 0 ≤
u ≤ B1, 0 ≤ u ≤ B2.

(i) if M(0, 0) ≤ λ1, g(0) ≤ λ1d2 + m(0), then (0, 0) is the only nonnegative
solution.

(ii) If g(0) < λ1d2+m(0), then the system has a positive solution iff M(0, 0) > λ1

and the first eigenvalue of the operator d2∆ + [g(u0)−m(0)]I is positive.
(iii) If g(0) > λ1d2 + m(0), we assume M(0, v) ≥ M(u, v) for u, v ≥ 0. Then

the system has a positive solution iff M(0, 0) > λ1 and the first eigenvalue of the
operator d2∆ + [g(u0)−m(0)]I and ∆ + M(0, v0)I are both positive.

In [6], Li and Logan give necessary and sufficient conditions for the coexistence of
strictly positive solutions of steady states for competing interacting system between
two species under Dirichlet boundary condition for M(u, v) = f(u) − g(v) and
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N(u, v) = b(v) − a(u). They showed that the coexistence is closely related to the
spectral properties of certain differential operators of Schrodinger type.

Theorem 2. (i) If either f(0) ≤ λ1 or b(0) ≤ λ1, then the system has no strictly
positive solutions.

(ii) If f(0) > λ1, b(0) > λ1 and the first eigenvalues of the operators ∆+(f(0)−
g(v0))I and ∆ + (b(0)− a(u0))I have the same sign, i.e. if both of them are either
positive or negative or zero, then the system has a positive solution.

(iii) If f(0) = b(0) and both f ′+ a′, b′+ g′ have the same constant sign on (0, c)
where c = max{c0, c1} then the conditions in (ii) are necessary and sufficient for
the existence of positive solutions to the system

Biologically, when f ′ + a′ > 0 and b′ + g′ > 0, the model describes a highly
competitive system, while when f ′ + a′ < 0, b′ + g′ < 0, they model a weakly
competitive system.

In [7], Li and Ghoreishi established sufficient and necessary conditions for the
existence of positive solutions of steady states for symbiotic interaction model under
Dirichlet boundary conditions.

The main results is that the existence of positive solutions is largely governed
by the status of the constant equilibria of the corresponding ODE system

du/dt = uM(u, v), dv/dt = vN(u, v).

In comparison, the coexistence of positive solutions to predator-prey or com-
petition interaction models depends on the shape of the domain because such an
existence is characterized by the spectral properties of certain differential operators
of Schrodinger type.

In recent years there has been a considerable amount of interest to the following
model with the linear diffusion and growth rates :

(3)
{ −∆[(α1 + β11u + β12v)u] = u(a1 − b11u− b12v)
−∆[(α2 + β21u + β22v)v] = v(a2 − b21u− b22v) in Ω.

This system (3) was proposed first by Shigesada et al. in [16]. The idea is that the
main reason of dispersal of two competing species is population pressures due to
the mutual interference between the individuals.

For one dimensional domain, there are several works relating to the existence
of non-constant solutions to the systems (3) under homogeneous Neumann bound-
ary conditions. ([10], [11]) They showed that non-constant positive solutions exist
when α2, β21, β22 are sufficiently small. In [17], the system (3) was considered
under a homogeneous Dirichlet boundary conditions using the singular perturba-
tion. He found the positive solutions if certain parameters are sufficiently small.
For n-dimensional domain, W. Ruan[13] considered the coupled competition elliptic
system (3) with Dirichlet boundary conditions by using the index theory. In [8],
Y. Lou and W. Ni investigated the existence of non-constant solutions of the above
system (3) under Neumann boundary conditions employing the method of Lya-
punov functional and degree theory. Recently, Ryu and Ahn[15] provided sufficient
conditions for the existence of positive solutions to the system (3) under homoge-
neous Robin boundary conditions. They also studied the positive coexistence to
the corresponding system of (3) with predator-prey interactions.
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In [14], Ryu and Ahn investigated the existence of positive solutions to the elliptic
competing interacting system with self-cross diffusions :

(4)
{ −∆[ϕ(u, v)u] = uf(u, v)
−∆[ψ(u, v)v] = vg(u, v) in Ω,

under Robin boundary conditions. They gave sufficient conditions for the coexis-
tence of positive solutions of system (4) with competitive interactions by using the
method of the fixed point index of compact operators in a positive cone. In fact,
they showed that if the sign of the principal eigenvalue of operators ∆ϕ((0, v0) +
f(0, v0), ∆ψ(u0, 0) + g(u0, 0) is both positive or both negative or both equal to
zero, then the system (4) has a positive solution. Specially, we should point out
that when one apply this result to the model (3), there are interesting observations
as follows: (i) increasing self-diffusion pressure eliminate all possible nontrivial
steady states, (ii) increasing the cross-diffusion pressures tends to create nontrivial
steady state and (iii) increasing the diffusion coefficients α1, α2 while everything
else is fixed, tends to eliminates any existing positive steady states. These impli-
cations follow from the variational property of the principal eigenvalue of certain
differential operators and a-priori estimates of positive solutions to the system (3).

It is known that various models with self-cross diffusions have appeared in many
fields of applied sciences. Thus we hope to understand mathematically the dynamics
involved in self-cross diffusions so that one is able to model new phenomena more
precisely.
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