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SOLVING n-TH ORDER ORDINARY DIFFERENTIAL
EQUATIONS

HYUN-MIN KIM

Abstract. For solving the second order ordinary differential equation it is
necessary to solve the quadratic eigenvalue problem. We show how solving
the quadratic matrix equation offers a potential saving of work and storage in
numerical sense.

1. The n-th order ordinary differential equation

The n-th order ordinary differential equation can be defined by

(1.1) An
dn

dtn
x(t) + An−1

dn−1

dtn−1
x(t) + · · ·+ A1

d

dt
x(t) + A0x(t) = 0,

where An, An−1, . . . , A0 are n × n complex matrices. For solving the equation
(1.1) we need to solve the polynomial eigenvalue problem

P (λ)v = (λnAn + λn−1An−1 + · · ·+ λA1 + A0)v = 0.

In this paper we consider specially how the second order ordinary differential equa-
tion can be computed.

2. The second order ordinary differential equation

Figure 2.1 illustrates a connected damped mass-spring system. The i-th mass
of weight mi is connected to to the (i + 1)-th mass by a spring with constant ki

and damper with constant di, and is also connected to the ground by a spring with
constant κi and damper constant τi [9]. The vibration of this system gives a second
order differential equation

(2.1) A2
d2

dt2
x(t) + A1

d

dt
x(t) + A0x(t) = 0,

where the mass matrix A2 = diag(m1, . . . ,mn) is diagonal and the damping matrix
A1 and stiffness matrix A0 are symmetric tridiagonal. The general solution of the
equation (2.1) can be expressed by

x(t) = cWeΛt, W = [w1, . . . , wn], Λ = diag(µi),

where the pairs (µi, wi)n
i=1 are chosen from pair (λi, vi)2n

i=1 which satisfies the qua-
dratic eigenvalue problem

(2.2) Q(λ)v = (λ2A2 + λA1 + A0)v = 0, λ ∈ C, v ∈ Cn.
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Figure 2.1. An n degree of freedom damped mass-spring system.

A standard approach for solving the quadratic eigenvalue problem is to convert
(2.2) to a generalized eigenvalue problem of twice the dimension, 2n.

There are several possible ways and three special reductions have been examined
by Tisseur [8]. Setting x̂ = λx, we get

{
λx− x̂ = 0,

λA2x̂ + A0x + A1x̂ = 0.

and then the equation can be expressed by

λ

[
In 0
0 A2

] [
x
x̂

]
+

[
0 −In

A0 A1

] [
x
x̂

]
= 0.

Thus, we obtain a generalized eigenvalue problem:[
0 In

−A0 −A1

]
y = λ

[
In 0
0 A2

]
y

with

y =
[

x
λx

]
.

Now, suppose that a solvent S of the quadratic matrix equation,

(2.3) Q(X) = A2X
2 + A1X + A0 = 0, A2, A1, A0, X ∈ Cn×n,

can be found. The following result gives an important role of a solvent S in the
quadratic eigenvalue problem.

Theorem 2.1. [4, Cor. 3.6], [7, Thm. 3.3] When Q(λ) in (2.2) is divided on the
right by X − λI the remainder is A2X

2 + A1X + A0, and when Q(λ) is divided on
the left by X − λI the remainder is X2A2 + XA1 + A0.

From the Theorem 2.1, the quadratic eigenvalue problem Q(λ) can be factorized
in a simple form at a solvent S of Q(X):

Q(λ) = λ2A2 + λA1 + A0 = −(A1 + A2S + λA2)(S − λI).

Hence the problem is reduced to solving n × n eigenproblems: that of S and the
generalized eigenvalue problem (A1+A2S)x = −λA2x. (This approach can be used
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in the solution of differential eigenproblems [1].) This means if S can be found by
working only with n × n matrices then this approach offers a potential saving of
work and storage.

Recently several authors [2], [3], [5], [6] introduced some numerical methods for
solving the quadratic matrix equation Q(X) in (2.3).
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