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VOLUME AND PROJECTIVE CHANGE OF METRICS

SEONGTAG KIM

Abstract. We study developments of projective transformations and present
nonexistence of a nontrivial pointwise projective transformation from a non-
compact complete Riemannian manifold (M, g) to (M, g) with conditions on
volume growth and scalar curvature of (M, g), and Ricci curvature of (M, g).

1. Introduction

In this manuscript, we study Riemannian spaces which admit same geodesic
with possibly different parameterizations. In physics, a geodesic represents the
equation of motion, which describes all the phenomena. These space provide two
ambient spaces which produce same physical phenomena. The Riemannian metric
is determined by the angle and distance. The distance is measured along a geodesic.
A geodesic is the most important concept of Riemannian geometry, which is used
for calculating angle, distance, and other invariants of a manifold. Two of main
tools for the study of Riemannian metrics are a conformal transformation and a
projective transformation which preserve the angle and the geodesic, respectively.
It was known that a given Riemannian metric is determined by conformal structure
and projective structure (see Weyl [W]).

Here we study developments of the projective transformation and sketch the
nonexistence of a nontrivial pointwise projective transformation from a noncompact
complete Riemannian manifold (M, g) to (M, g) with conditions on volume growth
and scalar curvature of (M, g) and Ricci curvature of (M, g).

2. Projective Transformations

A diffeomorphism f from a Riemannian space (M, g) onto a Riemannian space
(M, g) is called a projective mapping if the image of every geodesic of (M, g) is
a geodesic in (M, g). A projective transformation is a projective mapping of a
manifold onto itself. When a projective transformation f : (M, g) → (M, g) is the
identity map, f is called a pointwise projective transformation and two Riemannian
metrics g and g on a manifold M are said to be pointwise projectively related. In
this case, two manifolds have the same geodesics as point sets.

Let us consider a pair of projectively related metrics. Let Ω be a convex bounded
open domain with smooth boundary ∂Ω in Rn. For p, q ∈ Ω, define d(p, q) = ln |z−p|

|z−q|
where z denote the intersection point of the ray from p to q. Note that d(p, q) 6=
d(q, p). This is called Func metric, which is a Finsler metric. By symmetrizing Func
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metric, we obtain Klein metric d(p, q) = 1
2 (d(p, q) + d(q, p)), which is Riemannian.

With some calculations, we see that geodesics on Ω with Klein metric are straight
lines in Ω. Therefore the Euclidean metric and Klein metric on Ω are projectively
related. Note that Klein metric and Func metric are complete metrics on Ω with
constant curvature K = −1 and K = − 1

4 , respectively (in Finsler sense).
We look over the developments of this subject. For two Riemannian metrics g, g

on M , if they are projectively related and one of metric is a constant curvature
metric then the other should be a constant curvature metric. This was proved by
Beltrami using Ricci identity (see [Ei]). Later Hilbert proposed a problem related
to projective transformation on Finsler manifolds.
Hilbert’s Fourth Problem: Given a domain Ω ⊂ Rn, determine all Finsler
metrics on Ω whose geodesics are straight line.
Recent developments of this problem can be found in [Sz].

There is a way to measure how to check two metrics are not projectively related.
The Weyl projective tensor is defined as

W i
jkl = Ri

ijk −
1

n− 1
(Rjkδi

l −Rjlδ
i
k).

It is known that if two metrics g and g are projectively related, then corresponding
Weyl tensors coincide. Moreover, if Weyl projective tensor of a metric vanishes on
a domain, then this metric is a constant curvature metric on this domain(see [W]).
The rigidity of projective transformation on constant curvature metric holds for
Einstein metrics.

Theorem 1 (Mike’s). Let (M, g) be a Riemannian n-manifold. Assume that g is
another Riemannian metric pointwise projective to g. Suppose that g is Einstein,
then g must be Einstein metric.

Previous studies on the nonexistence of projective mappings were done on a
manifold with harmonic curvature [T, MR]. Manifolds admitting an infinitesimal
projective transformation was studied on parallel Ricci space and constant scalar
curvature space [Y, Y1]. Mikeš gives an example of nontrivial projective transfor-
mation [Mi]. However, it is hard to show the existence of a projective transformation
on a general manifold. Harél [Ha] showed that there is a volume decreasing prop-
erty on the projective transformation from a manifold with Ricci curvature bound
below to a manifold with Ricci bounded above by negative constant.

Theorem 2 (Harél). Let f : M → M be a projective mapping of n-Riemannian
manifold, M being complete. If the Ricci curvature of M is bounded below by a
constant −A, and the Ricci curvature of M is bounded above by a constant −b < 0,
then either f is totally degenerate, or A > 0 and f is volume decreasing up to a
constant (A/B)n/2.

On Finsler case, Shen [Sh] recently showed that there exists no nontrivial point-
wise projective transformation between Einstein metrics with other conditions. For
the proof, Shen used a ordinary differential equation along a geodesic. For other
developments of the projective transformation, we refer to Mikeš [Mi1].

3. Changes of metrics

Let g and g be two Riemannian metrics on a manifold M . A necessary and suffi-
cient condition for a mapping f from (M, g) to (M, g) to be a pointwise projective
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transformation is that there exists a covector ψj(x) satisfying the following

(1) Γh
ij(x) = Γh

ij(x) + δh
i ψj + δh

j ψi,

in a common coordinate system x, where Γ (Γ) is the connection of (M, g) ((M, g)),
respectively (see [Sp] Vol. 2). In case the covector ψj(x) 6= 0, projective transfor-
mation is called nontrivial. Contracting (1) for h and j, we have

(2) 2(n + 1)ψi =
∂

∂xi
log

G

G
,

where G = det(gij) and G = det(gij). Since G
G is an invariant, ψi is the gradient of

function ψ where

(3) 2(n + 1)ψ = log
G

G
+ c0,

for some constant c0. Let ψ,ij be the second covariant derivative of ψ with respect
to the metric gij , in other words,

(4) ψ,ij =
∂2ψ

∂xi∂xj
− ∂ψ

∂xk
Γk

ij

and

(5) ψij = ψ,ij − ψiψj .

Curvature and Ricci curvature of (M, g) are given by

Rm
ijl = ∂jΓm

il − ∂lΓm
ij + Γt

ilΓ
m
tj − Γt

ijΓ
m
tl ,(6)

Rij = −Rl
ijl

= ∂lΓl
ij − ∂jΓl

il − Γt
ilΓ

l
tj + Γt

ijΓ
l
tl.(7)

Curvature formula and (1) implies

(8) Rm
ijl = Rm

ijl + δm
l ψij − δm

j ψil.

Contracting (8) with m and l, we have

(9) Rij = Rij − (n− 1)ψij .

We denote S = gijRij , scalar curvature of (M, g), Rij , Ricci curvature of (M, g),
f+(x) = max(f(x), 0), and f−(x) = min(f(x), 0). By taking trace of (9), we have:

Theorem 3. Let (M, g) and (M, g) be compact Riemannian manifolds. Assume
that (M, g) has nonnegative total scalar curvature and (M, g) has nonpositive Ricci
curvature. Then there is no nontrivial pointwise projective transformation from
(M, g) to (M, g).

Proof. Contracting (9) by gij we get

(10) (n− 1)4ψ = (n− 1)|∇ψ|2 + S − gijRij .

Taking the coordinates gij diagonalizing Rij we see that the invariant gijRij ≤ 0.
By integrating (10) on M , we have |∇ψ| = 0.

Corollary 4. Let (M, g) and (M, g) be compact Riemannian manifolds. Assume
that S − gijRij ≥ 0 or S − gijRij ≤ 0 on (M, g). Then there is no nontrivial
pointwise projective transformation from (M, g) to (M, g).
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Proof. Take ψ = − log f for f > 0. (10) becomes

(11) −(n− 1)4f = f(S − gijRij).

Proof follows from the integration of (11) on M .

Examining (10), an obstruction to projective transformations between noncom-
pact complete Riemannian manifolds is obtained, which is an extension of Theorem
2.

Theorem 5. Let (M, g) be a noncompact complete Riemannian manifold with
scalar curvature S, which has at most quadratic volume growth and

∫
M
|S−|dVg <

∞. Assume that
∫

M
SdVg is infinite or nonnegative, and (M, g) has nonpositive

Ricci curvature. Then there is no nontrivial pointwise projective transformation
from (M, g) to (M, g).

Remark. There are noncompact complete Riemannian manifolds satisfying Theo-
rem 5. Let (K,h) be a compact manifold with nonnegative scalar curvature. Then
K × R2 with the product metric has nonnegative scalar curvature and quadratic
volume growth.

Sketch of proof: Let us denote |Ω| =
∫
Ω

1 dVg and X = ∇ψ. Then, (10) turns
into the following form:

(12) (n− 1) divX = (n− 1)|X|2 + S − gijRij .

Multiplying a compact supported smooth function φ2 on (12),

(13)
∫

φ2
(
(n− 1)|X|2 + S − gijRij

)
dVg = −(n− 1)

∫
X(φ2)dVg.

Choose φ = 1 on B(R), φ = 0 on the outside of B(2R) and |∇φ| ≤ c/R, where c is
a constant and B(R) ≡ {x ∈ M |d(p, x) ≤ R} for some fixed point p ∈ M .

0 =
∫

B(2R)

φ2
(
(n− 1)|X|2 + S − gijRij

)
+ 2(n− 1)φX · ∇φ dVg

≥
∫

B(2R)

φ2((n− 1)|X|2 + S − gijRij)dVg

−(n− 1)
∫

B(2R)−B(R)

|φX|2 + |∇φ|2dVg.

Using quadratic volume growth condition and
∫

M
|S−|dVg < ∞, we can show that

|X| ≡ 0 with some calculations. We refer details to [K].

For manifolds with the volume doubling property, the following obstruction is
constructed using the similar method.

Theorem 6. Let (M, g) be a noncompact complete Riemannian manifold which
has infinite volume and scalar curvature S > c2

1 > 0 on the outside of any compact
subset for a nonzero constant c1, and satisfies that there exists a constant c2 such
that |B(x, 2R)| ≤ c2|B(x,R)| for some fixed point x ∈ M and large R. Assume

that (M, g) has nonpositive Ricci curvature Rij or limR→∞
R

B(R) |(gijRij)
+|dVg

V olB(R) = 0.
Then there exists no nontrivial pointwise projective transformation from (M, g) to
(M, g).
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