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ON ALGEBRAIC ANALYSIS II

SUN T. SOH

Abstract. As a continuation of my article, \On Algebraic Analysis I", an

underlying theory for computational mathematics called, Algebraic Analysis,

is discussed with some examples and helpful remarks. Based on thse results,

some important elementary algorithms in Algebraic Analysis are accordingly

discussed.

1. Introduction

In [9], the author discussed very shortly the Theory of Groebner Bases and some

of its applications. In this article, a more detailed version of the theory is discussed.

All of the results in this article are well developed, for instance, in [3] or [1]. But,

this does not means, by no means, that the results covered in this article are all of

those so far developed.

In the followings, the most important algorithms for exact computation, i.e.,

Algebraic Analysis, are listed with some necessary de�nitions, theoretical results

but with no proofs, and some helpful remarks. They are a theoretical backbone of

exact computation or Algebraic Analysis.

Among several algorithms, the division algorithm for polynomials in more than

one variables and the Buchberger's algorithm for Groebner bases are the most

fundamental ones in the sense that others are based on these two.

2. The Division Algorithm In Several Variables

One starts with a simple example.

Example 1. Decide whether the following system of polynomial equations over the

�eld C of complex numbers is solvable, and if so, �nd all the solutions of it:8
<
:

x
2 + y

2 + z
2 = 1

x
2 + z

2 = y

x = z

We compute a Groebner basis of I = (x2 + y
2 + z

2 � 1; x2 + z
2 � y; x � z) with

respect to the lex order under x > _y > z: The basis is

g1 = x� z

g2 = �y + 2z2

g3 = z
4 + (1=2)z2 � 1=4

:
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so that it is solvable and its solutions are completely determined by solving g3 =

0; g2 = 0; and g1 = 0; successively, since I = (g1; g2; g3):

Remark 1. One recalls that k[x1; :::; xn] is a UFD but it is not a PID in general,

unless n = 1: This fact causes a big trouble to mathematicians for a long time, ever

since the discovery of the division algorithm for integers in at least Greek period.

The division algorithm for polynomials in more than one variables described in

Theorem 1 below is still incomplete in the sense that both the quotients a1; :::; as and

the remainder r in there are not uniquely determined. But, the amazing discovery

of Buchberger made this division algorithm quite signi�cant since the remainder is

going to be unique, although not complete because, for an obvious reason, making

the quotients furthermore unique is still impossible and will be impossible.

By Buchberger's discovery of an algorithm for a Groebner basis for a polynomial

ideal, which changes the generating set of a given polynomial ideal I into another

generating set G of I which is still �nite but with an amazing property that the

remainder r is now guaranteed to be unique when one attempts to divide a given

polynomial f with the elements of this new generating set G of I.

In addition to this, the above example explicitly shows the strength of the algo-

rithm under the lex order. Namely, it allows us to solve a system of non-linear

equations step by step by the so-called backward substitution. (In the case of the

above example, one �rst solves g3 = 0, and substitute its solutions (called partial

solutions) to g2 = 0 in order to obtain a little bit bigger partial solutions, and then

substitute these to g1 = 0 to �nally obtain the whole solutions.

To understand the theory behind exact computation i.e., symbolic computation

i.e., Algebraic Analysis, one has to study the subject from a strong computational

point of view. The author decided to present the following summary of the theory

of Groebner bases which should be su�cient enough for the beginners.

De�nition 1. A monomial ordering on k[x1; :::; xn] under a given ordering be-

tween unknowns is any relation > on Zn�0; or equivalently, any relation on the set

of monomials x�; � 2 Zn�0; such that

1. > is a total ordering on Zn�0:

2. If � > � and  2 Zn�0; then �+  > � + :

3. > is a well-ordering.

Example 2. Some examples of monomial ordering under a given ordering between

unknowns are

� Lexicographic order (Lex order)

� Graded lex order

� Graded reverse lex order

Their de�nitions are

De�nition 2. (Lexicographic Order) Let � = (�1; :::; �n) and � = (�1; :::; �n)

be two elements in Zn�0: We say that � <lex � if, in the vector di�erence ���; the

left-most nonzero entry is positive.

De�nition 3. (Graded Lex Order) Let �; � 2 Zn�0: We say � <grlex � if

1. j�j =
P

n

i=1 �i > j�j =
P

n

i=1 �i; or

2. j�j = j�j but � <lex �:
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De�nition 4. (Graded Reverse Lex Order) Let �; � 2 Zn�0: We say � <grlex �

if

1. j�j =
P

n

i=1 �i > j�j =
P

n

i=1 �i; or

2. j�j = j�j but in �� � 2 Zn; the right-most nonzero entry is negative.

These are not all of them. In fact, it is well known that there are in�nitely many

monomial orders.

Let

f =
X
�

c�x
�
;

be a polynomial in k[x1; :::; xn], for uniquely determined c� 2 k; x
� = x

�1

1 � � � x�n
n

,

where by de�nition � = (�1; :::; �n): Then a monomial order < always allows us to

compare which monomial is the biggest one among those x�'s, with respect to this

<; showing up in writing f in a unique manner as above.

De�nition 5. The biggest one is usually called the leading monomial of f , and

denoted by

LM(f):

If a particular x� is LM(f); then c�x
� is called the leading term of f , and denoted

by

LT (f);

and � = (�1; :::; �n) is called the multidegree of f , and denoted by

multi deg(f):

Theorem 1. (The Division Algorithm for polynomials in k[x1; :::; xn]). Un-

der a �xed monomial order > on polynomials, let F = (f1; :::; fs) be an ordered

s-tuple of polynomials in k[x1; :::; xn]: Then any f 2 k[x1; :::; xn] can be written as

f = a1f1 + :::+ asfs + r;

where ai; r 2 k[x1; :::; xn]; and r is a k-linear combination of monomials, none of

which is divisible by any of the leading terms LT (f1); :::; LT (fs) of the f1; :::; fs:

Furthermore, if aifi 6= 0; we have

multi deg(f) � multi deg(aifi):

One should note that this theorem never claims that either the quotients a1; :::; as
or the remainder r are uniquely determined. In this sense, this division is far from

complete.

Example 3. Would like to divide x
2
y + xy

2 + y
2 by xy � 1 and y

2 � 1: Assume

x > y and assume lex order. Then

x
2
y + xy

2 + y
2 = (x+ y) � (xy � 1) + 1 � (y2 � 1) + x+ y + 1

But the remainder x+ y+1 is not uniquely determined when the order of dividend

is changed:

x
2
y + xy

2 + y
2 = (x + 1) � (y2 � 1) + x � (xy � 1) + 2x+ 1

where the remainder is 2x+ 1:
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Example 4. Let f = xy
2 � x and f1 = xy + 1; f2 = y

2 � 1: With x > y and lex

order, we have

xy
2 � x = y � (xy + 1) + 0 � (y2 � 1) + (�x� y)

xy
2 � x = x � (y2 � 1) + 0 � (xy + 1) + 0:

Thus, the remainder = 0 implies f 2 (f1; f2); but not conversely in general.

3. Groebner Bases

On the other hand, Buchberger ingeniously invented an algorithm in 1965 which

allows us, when combined with the division algorithm in several variables, to com-

pute the remainder of the division algorithm in a unique manner under a �xed

monomial order. Thanks to his algorithm, the division algorithm gained a strong

power as one shall see below. One starts with an axiomatic de�nition of Groebner

basis:

De�nition 6. Fix a monomial order. A �nite subset G = fg1; :::; gtg of an ideal

I = (g1; :::; gt) is said to be a Groebner basis if

(LT (g1); :::; LT (gt)) = (LT (I));

where (LT (I)) is the ideal generated by all the leading terms of polynomials in I.

Remark 2. The problem of this version of de�nition of Groebner basis of purely

axiomatic nature is computationally useless.

Remark 3. One may easily prove that a set fg1; :::; gtg � I is a Groebner basis if

and only if the leading term of any element I is divisible by one of the LT (gi).

Remark 4. A Groebner basis is a Hilbert basis, but not conversely.

The next result says that when one divides a polynomial with a Groebner basis

according to the division algorithm in Theorem 1, the remainder is always uniquely

determined.

Theorem 2. Let G = fg1; :::; gtg be a Groebner basis for an ideal I � k[x1; :::; xn]

and let f 2 I: Then there exists a unique r 2 k[x1; :::; xn] satisfying:

1. No term of r is divisible by one of LT (g1); :::; LT (gt);

2. There exists g 2 I such that f = g + r:

One has an immediate corollary.

Corollary 3. f 2 I if and only if the remainder on division of f by G is zero.

Remark 5. These axiomatic results suddenly gain their strong points by the works

of Buchberger in discovering an algorithm for Groebner bases in 1965, and it is the

main subject of the next section.

4. Buchberger's Algorithm for Groebner Bases

The following result is computationally very important, since it is the main

criterion utilized in Buchberger's algorithm for actually converting the given set of

generating set of a polynomial ideal I into its Groebner basis.
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Theorem 4. Let I be a polynomial ideal. Then a basis G = fg1; :::; gtg for I is a

Groebner basis for I if and only if for all pairs i 6= j; the remainder on division of

S(gi; gj) by G (listed in some order) is zero, where

S(f; g) =
LCM((LM(f); LM(g))

LT (f)
� f �

LCM(LM(f); LM(g))

LT (g)
� g:

The most important result in Algebraic Analysis is the following algorithm.

Theorem 5. (Buchberger's Algorithm to construct a Groebner basis in a

�nite number of steps). There exists an algorithm which computes a Groebner

basis of I from a given generating set of a polynomial ideal I.

Remark 6. The time e�ciency of Buchberger's algorithm is still quite controver-

sial, since it generally requires an exponential time e�ciency although it is very de-

pendent on the choice of a monomial order. This means that the complexity analysis

of Buchberger's algorithm is still remained as an active research area. But, when

the number of unknowns are not too many and when the coe�cients of polynomials

are not too much big and strange, it is generally known that the �ne-tuned version

of his algorithm is fast enough to tolerate. The important point is that we never

really had such a remarkable algorithm until 1965.

De�nition 7. A reduced Groebner basis for a polynomial ideal I is a Groebner

basis G for I such that

1. LC(p) = 1 for all p 2 G;

2. For all p 2 G; no monomial of p belongs to (LT (G� fpg)):

Remark 7. The combination of the division algorithm in Theorem 1 and the Buch-

berger's algorithm in Theorem 5 is computationally very important.

Lemma 6. Let I 6= f0g be a polynomial ideal. Then, for a given monomial order-

ing, I has a unique reduced Groebner basis.

Remark 8. Any computer algebra systems which has \SOLVE" command, for

instance, MAPLE, REDUCE, MACSYMA, MATHEMATICA, etc., are already

equipped with some version of Buchberger's algorithm which produces the reduced

Groebner basis of a polynomial ideal. This enables us to check the result of a par-

ticular problem under a particular computer algebra system loaded in a particular

machine is indeed correct by comparing it with that obtained under a di�erent com-

puter algebra system in a di�erent machine.

5. Elimination and Extension Theory

De�nition 8. Given I = (f1; :::; fs) � k[x1; :::; xn]; the ideal Ik of elimination

at k-th step of I is the ideal of k[xk+1; :::; xn] de�ned by

Ik = I \ k[xk+1; :::; xn]:

Theorem 7. (The Elimination Theorem). Let I � k[x1; :::; xn] be an ideal and

let G be a Groebner basis of I with respect to lex order where x1 > x2 > ::: > xn:

Then, for each 0 � k � n; the subset

Gk = G \ k[xk+1; :::xn]

is a Groebner basis of the ideal of elimination at k-th step.
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Theorem 8. (The Extension Theorem). Let I = (f1; :::; fs) � k[x1; :::; xn] and

I1 be the ideal of elimination at �rst step of I. For each 1 � i � s, write fi in the

form

fi = gi(x2; :::; xn)x
Ni

1 + terms in which x1 has degree < Ni;

where Ni � 0 and gi 2 k[x1; :::; xn] (where k is algebraically closed) is nonzero.

(Set gi = 0 if fi = 0). Suppose that we have a partial solution (a2; :::; an) 2 V(I1):

If (a2; :::; an) =2 V(g1; :::; gs); then there exists a1 2 k such that (a1; :::; an) 2 V(I):

Remark 9. The proof of this theorem is done by the theory of resultants, well-

developed by those who worked in the Invariant Theory.

Theorem 9. (Polynomial Implicitization). If k is an in�nite �eld, let F :

k
m ! k

n be the function determined by the polynomial parametrization as is in the

next Lemma. Let I be the ideal I = (x1 � f1; :::; xn � fn) � k[t1; :::; tm; x1; :::; xn]

and let Im = I \ k[x1; :::; xn] be the ideal of elimination at m-th step. Then V(Im)

is the smallest variety in k
n containing F (km):

Lemma 10. If V is a variety over an in�nite �eld k de�ned parametrically by

xi = fi(t1; :::; tm); i = 1; :::; n;

where the fi are polynomials in k[t1; :::; tm]; then V is irreducible.

Theorem 11. (Rational Implicitization). If k is an in�nite �eld, let F :

k
m �W ! k

n be the function determined by the rational parametrization as in

the next Lemma. Let J be the ideal J = (g1x1 � f1; :::; gnxn � fn; 1 � gy) �
k[y; t1; :::; tm; x1; :::; xn]; where g = g1 � g2 � � � gn; and let Jm+1 = J \ k[x1; :::; xn] be
the ideal of elimination at (m+1)st step. Then V(Jm+1) is the smallest variety in

k
n containing F (km �W ):

Lemma 12. If V is a variety over an in�nite �eld k de�ned parametrically by

xi =
fi(t1; :::; tm)

gi(t1; :::; tm)

where the fi and the gi are polynomials in k[t1; :::; tm]; then V is irreducible.

Remark 10. The converse process of implicitization, called parametrization, is not

always possible.

Theorem 13. Let k be an algebraically closed �eld. Suppose V = V(f1; :::; fs) �
k
n
; and let �k : kn ! k

n�k be projection onto the last n�k factors. If Ik is the ideal
of elimination at k-th step of I = (f1; :::; fs), i.e., Ik = (f1; :::; fs) \ k[xk+1; :::; xn];
then V(Ik) is the Zariski closure of �k(V ) (i.e., the smallest a�ne algebraic

variety containing �k(V )).

Theorem 14. (Radical Membership). Let k be an arbitrary �eld and let I =

(f1; :::; fs) � k[x1; :::; xn] be an ideal. Then f 2
p
I if and only if the constant

polynomial 1 belongs to the ideal I~ = (f1; :::; fs; 1� yf) � k[x1; :::; xn; y] (in which

case, I~ = k[x1; :::; xn; y]):

Theorem 15. Let I; J be ideals in k[x1; :::; xn]: Then

I \ J = (tI + (1� t)J) \ k[x1; :::; xn]:

Lemma 16. The intersection I \ J of two principal ideals I = (f); J = (g) �
k[x1; :::; xn] is a principal ideal generated by LCM(f; g):
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Theorem 17. Let I be an ideal and g an element of k[x1; :::; xn]: If fh1; :::; hpg is

a basis of the ideal I \ (g); then fh1=g; :::; hp=gg is a basis of I : (g):

Theorem 18. Let V = V(I) be an a�ne variety in k
n where k is an algebraically

closed �eld and �x a monomial ordering in k[x1; :::; xn]: Then the following state-

ments are equivalent:

1. V is a �nite set.

2. For each i; 1 � i � n; there exists some mi � 0 such that xmi

i
2 LT ((I)):

3. Let G be a Groebner basis for I: Then for each i; 1 � i � n; there exists some

mi � 0 such that xmi

i
= LM(g) for some g 2 G:

4. The k-vector space S = Span(x� : x� =2 (LT (I))) is �nite-dimensional.

5. The k-vector space k[x1; :::; xn]=I is �nite-dimensional.

Now we consider the projective situation.

De�nition 9. A graded monomial order on k[x1; :::; xn] is a monomial order

that orders �rst by total degree:

x
�
< x

�

whenever j�j < j�j; where j�j = the sum of �i's.

Example 5. Graded lex order and graded reverse lex order are graded monomial

orders, but lex order is not.

Theorem 19. Let I be an ideal in k[x1; :::; xn] and let G = fg1; :::; gsg be a Groeb-

ner basis for I with respect to a graded monomial order in k[x1; :::; xn]: Then

G
h = (gh1 ; :::; g

h

s
) is a basis for Ih � k[x0; x1; :::; xn]:

Theorem 20. Let k be an algebraically closed �eld, and let I � k[x1; :::; xn] be an

ideal. Then V(Ih) � Pn(k) is the projective closure of Va(I) � k
n
:

De�nition 10. Let k be a �eld.

1. A polynomial F 2 k[x0; :::; xn; y1; :::; ym] is (x0; :::; xn)-homogeneous poly-

nomial if there exists an integer k � 0 such that

F =
X
j�j=k

h�(y1; :::; ym)x�;

where x� is a monomial in x0; :::; xn of multidegree � and h� 2 k[y1; :::; ym]:

2. The variety V(F1; :::; Fs) � Pn � k
m de�ned by (x0; :::; xn)-homogeneous

polynomials F1; :::; Fs 2 k[x0; :::; xn; y1; :::; ym] is the set

f(a0; :::; an; b1; :::; bm) 2 Pn � k
m : Fi(a0; :::; an; b1; :::; bm) = 0 for 1 � i � sg:

De�nition 11. Given an ideal I � k[x0; :::; xn; y1; :::; ym] generated by (x0; :::; xn)-

homogeneous polynomials, the projective elimination ideal of I is the set

Î = ff 2 k[y1; :::; ym] : for each 0 � i � n; there exists ei � 0 with xei
i
f 2 Ig:

Theorem 21. Let I = (F1; :::; Fs) � k[x0; :::; xn; y1; :::; ym] be an ideal generated

by (x0; :::; xn)-homogeneous polynomials F1; :::; Fs. Then

Î = I
(0)
n

\ I(1)
n

\ � � � \ I(n)
n

;
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where I
(i)
n = I

(i) \ k[y1; :::; ym] is the ideal of n-th elimination of I(i) where

I
(i) = (F

(i)
1 ; :::; F

(i)
s

)

where F
(i)

j
= Fj(x0; ::::; xi�1; 1; xi+1; y1; :::; ym) is the dehomonization of Fj at i-th

place; for each 1 � j � s:

Theorem 22. (The Projective Extension Theorem). Assume that k is alge-

braically closed and that V = V(F1; :::; Fs) � Pn � k
m is de�ned by (x0; :::; xn)-

homogeneous polynomials in k[x0; :::; xn; y1; :::; ym]: Write I = (F1; :::; Fs): If

� : Pn � k
m ! k

m

is projection onto the last m coordinates, then

�(V ) = V(Î):

Theorem 23. Let k be algebraically closed and let F : Pn ! Pm be de�ned by

homogeneous polynomials f0; :::fm 2 k[x0; :::; xn] which have the same total degree

and no common zeroes in Pn
: In k[x0; :::; xn; y0; :::; ym]; let I = (y0�f0; :::; ym�fm)

and let In+1 = I\k[y0; :::; ym]: Then In+1 is a homogenous ideal in k[y0; :::; ym] and

F (Pn) = V(In+1):

6. Dimension Theory

Remark 11. In the past, the dimension of an irreducible a�ne variety V was

de�ned as the transcendence degree of the �eld of fractions k(V ) of its coordinate

ring k[X ]. The problem with this axiomatic de�nition is that one cannot compute

it since it is very di�cult to know which collection of elements of k(V ) is indeed

algebraically independent over k:

Theorem 24. (The Dimension Theorem). Let V = V(I) be an a�ne variety,

where I � k[x1; :::; xn] is an ideal. If k is algebraically closed, then

dim V = degaHPI(s);

where a
HPI(s) is an a�ne Hilbert polynomial of I: Furthermore, if > is a graded

order on k[x1; :::; xn]; then

dim V = degaHP(LT (I))(s)

= max : dim : of a coordinate subspace in V((LT (I)):

Finally, the last two equalities hold over any �eld k when I = I(V ):

Theorem 25. (the dimension theorem). Let V = V(I) � Pn be a projective

variety, where I � k[x0; :::; xn] is a homogeneous ideal. If V is nonempty and k is

algebraically closed, then

dimV = degHPI(s);

where HPI (s) is the Hilbert polynomial of I. Furthermore, for any monomial order

on k[x0; :::; xn]; we have

dimV = degHP(LT (D))(s)

= max : dim : of a projective coordinate subspace in V((LT (I))):

Finally, the last two equalities holds over any �eld k when I = I(V ):
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Thus, by computing the (a�ne) Hilbert polynomial of I in each case, one can

�gure out the dimension of a variety.

For more advanced results, one may refer to, for instance, [4] and its references.

7. Algorithms Based on Buchberger's Algorithm

Algorithms in this section are immediate application of the basic algorithms

introduced in Section 2 and Section 4. The author is quite sure that some of the

readers will be surprised by the availability of those algorithms discussed now. One

can �nd enough examples of these algorithms, for instance, in [3] or [1].

7.1. Algorithm for ideal membership. Apply Cor. 3.

7.2. Algorithm for ideal equality. Let I = (f1; :::; fs) and J = (g1; :::; gt) be

two ideals in k[x1; :::; xn]: Then I = J if and only if their reduced Groebner bases

are the same for a �xed monomial order (cf. Lemma 6).

7.3. Algorithm for consistency (i.e. Solvability question of system of

polynomial equations). If we have polynomials f1; :::; fs 2 k[x1; :::; xn] where k

is algebraically closed, compute a reduced Groebner basis for the ideal they generate

with respect to any ordering. If this basis is f1g, the polynomials have no common

zero in k
n; otherwise, they have a common zero. (cf. Lemma 6).

7.4. Algorithm for detecting zero-dimensional varieties. Apply Theorem

18.

7.5. Implicitization algorithm for polynomial parametrizations. If we have

xi = fi(t1; :::; tm) for polynomials f1; :::; fn 2 k[t1; :::; tm]; consider the ideal

I = (x1 � f1; :::; xn � fn) 2 k[t1; :::; tm; x1; :::; xn]

and compute a Groebner basis with respect to a lex ordering where every ti is

greater than every xi: Then by the Elimination Theorem 7, the element of the

Groebner basis not involving t1; :::; tm form a basis of Im; and by the Polynomial

Implicitization Theorem 9, they de�ne the smallest variety in k
n containing

the parametrization.

7.6. Implicitization algorithm for rational parametrizations. If we have

xi = fi(t1; :::; tm)=gi(t1; :::; tm) for polynomials f1; g1:::; fn; gn 2 k[t1; :::; tm]; con-

sider the new variable y and the ideal

I = (g1x1 � f1; :::; gnxn � fn; 1� gy) 2 k[y; t1; :::; tm; x1; :::; xn]

where g = g1 � � �gn: Compute a Groebner basis with respect to a lex ordering where

y and every ti are greater than every xi: Then by the Elimination Theorem 7,

the element of the Groebner basis not involving y; t1; :::; tm form a basis of Im; and

by the Rational Implicitization Theorem 11, they de�ne the smallest variety

in k
n containing the parametrization.

7.7. Algorithm for computing intersection of ideals. If I = (f1; :::; fr) and

J = (g1; :::; gs) are ideals in k[x1; :::; xn]; consider the ideal

(tf1; :::; tfr; (1� t)g1; :::; (1� t)gs) � k[x1; :::; xn; t]

and compute a Groebner basis with respect to lex order in which t is greater than

the xi: Then the elements of this basis which do not contain the variable t is a

Groebner basis of I \ J: (cf. Theorem 15).
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7.8. Algorithm for computing the l.c.m. To compute the l:c:m: of two polyno-

mials f; g 2 k[x1; :::; xn]; we compute the intersection (f)\ (g) using the algorithm

for computing intersection of ideals and then by Lemma 16, we get the result. (cf.

Theorem15).

7.9. Algorithm for computing the g.c.d. Compute l:c:m: of f; g 2 k[x1; :::; xn]

and apply the division algorithm to get the result by the formula

GCD(f; g) =
f � g

LCM(f; g)
:

7.10. Algorithm for computing a basis of an ideal quotient I:J. Given

I = (f1; :::; fr) and J = (g1; :::; gs) = (g1) + ::: + (gs); to compute I : J; �rst

compute a basis for I : (gi) for each i: In view of Theorem 17 we �rst compute a

basis of (f1; :::; fr)\(gi) by the algorithm above. Then using the division algorithm,

divide each of these elements by gi to get a basis for I : (gi): Finally compute a

basis for I : J by apply the intersection algorithm s � 1 times, computing �rst a

basis for I : (g1; g2) = (I : (g1)) \ (I : (g2)); then a basis for I : (g1; g2; g3) = (I :

(g1; g2)) \ (I : (g3)); and so on.

7.11. Algorithm for computing the projective closure of an a�ne variety.

Given W = V(f1; :::; fs) � k
n where k is algebraically closed, compute a Groebner

basis G of (f1; :::; fn) with respect to a graded monomial order. Then the projective

closure in Pn(k) is de�ned by gh = 0 for g 2 G: (cf. Theorem 20).

7.12. Algorithm for radical membership. Let I = (f1; :::; fs) be an ideal in

k[x1; :::; xn] and let f be a polynomial in k[x1; :::; xn]: To determine if f 2
p
I �

k[x1; :::; xn]; compute a reduced Groebner basis of the ideal (f1; :::; fs; 1 � yf) �
k[x1; :::; xn; y] with respect to some ordering. If the result is f1g; then f 2

p
I:

Otherwise, f =2
p
I: (cf. Theorem 14).

8. Further Results

The algorithms discussed so far are somewhat oriented to Algebraic Geometry.

Once understanding the materials presented in this article, one may then refer to

[1] and [2] for Commutative Algebra oriented materials. For example, the following

algorithms for commutative algebra and the needed theoretical results for them are

presented in these references.

8.1. Algorithm for associated primes. Can we �nd bases for the associated

primes Pi =
p
Qi? Yes.

8.2. Algorithm for radical generators.

8.3. Algorithm for radical ideal.

8.4. Algorithm for primality. Is there an algorithm for deciding if a given ideal

is prime? Yes.

8.5. Algorithm for irreducibility. Is there an algorithm for deciding if a given

a�ne variety is irreducible? Yes.

8.6. Algorithm for decomposition. Is there an algorithm for �nding the mini-

mal decomposition of a given variety or radical ideal? Yes.
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8.7. Algorithm for primary decomposition. Is there an algorithm for �nding

bases for the primary ideals Qi in a minimal primary decomposition of an ideal I?

Yes.

For more advanced results, the readers may also refer to [4], [5], [10], and refer-

ences of these literatures.
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