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FINITE ADDITIVE MEASURE AND HYPERBOLIC SPACE

YUNHI CHO

Abstract. We can extend the hyperbolic space beyond the in�nity of the

space by �nite additive measure theory. This extended space which contains

hyperbolic space as a subset has many natural and surprising properties which

are similar to the case of spherical geometry.

0. Introduction

There are many hyperbolic models representing hyperbolic space H
n , for ex-

ample, upper half space model, unit disk model, hyperboloid model and Kleinian

model. The Kleinian model Kn which is our matter of concern has the straight

lines as geodesics. Here the Kleinian model is only de�ned at the inside of an unit

ball by a well known Riemannian metric

ds2 =

�
�xidxi

1� jxj2

�2
+

�dx2
i

1� jxj2
:

This Riemannian metric induces a volume form

dV =
dx1 ^ � � � ^ dxn

(1� jxj2)
n+1

2

:

Here we can reform the Kleinian metric to a Kleinian �-metric

ds2
�
=

�
�xidxi

d2
�
� jxj2

�2
+

�dx2
i

d2
�
� jxj2

;

where d� = 1��i, then the Kleinian volume form is changed to a Kleinian �-volume

form

dV� =
d� dx1 ^ � � � ^ dxn

(d2
�
� jxj2)

n+1

2

:

In the Kleinian model, the volume is calculated by

�(U) =

Z
U

dx1 ^ � � � ^ dxn

(1� jxj2)
n+1

2

; for a set U in Kn:

By the way the Kleinian �-volume form induces a volume for any set U in Rn which

contains Kn as a subset by

(1) �(U) = lim
�!0

Z
U

d� dx1 ^ � � � ^ dxn

(d2
�
� jxj2)

n+1

2

;

c
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and the above two volume integrals coincide at the case that a set U is contained

in Kn. So the second integral volume formula (1) is the generalization of the �rst

integral formula. Particularly for a set which intersects transversally to the ideal

boundary of the hyperbolic space, the volume of the set has a �nite complex value.

The volumes on the extended hyperbolic space have the hyperbolic invariant

property as well as the hyperbolic space, i.e., �(f(U)) = �(U) for an arbitrary

hyperbolic isometry f . However the new measure � does not admit the countable

additive property. So we need �nd a suitable measure theory for this case: �nite

additive measure theory with an algebra (change countable union property to �nite

one) and a �nite additive measure. Though the �nite additive measure is weaker

than an usual measure, we can construct a su�cient and natural theory on the

extended Kleinian model K
n

.

The distance between two points on the extended space was �rstly de�ned by

Schlenker [4] by cross ratio. There he considered only distance. But our �-technique

can be adapted for any other geometric objects, for example, distance between two

points (easily turned out to be same to the de�nition of Schlenker), lengths of a

curves, angles, k-dimensional volumes and so on (see [1]).

1. Finite additive invariant measure on the extended hyperbolic space

In order to speak about �nite additive measure theory on the extended space,

we have to construct (K
n

;M; �), where M is an algebra in K
n

and � is a �nite

additive measure de�ned on M.

The �nite additive measure � is already chosen as � in (1). Hence the remaining

parts are a construction of M and the �nite additivity of � on M.

Before the construction, let's de�ne the four Borel subcollections U1;U2; U3,

and U4 on K
n

and represent an element of Ui as Ui. U1 and U2 is a collection of

Borel sets in Kn and K
n

nKn, respectively, with �nite volume, U3 is a collection of

center cones whose vertices are origin with Borel set sections, and U4 is a collection

of U3 n (U1 [ U2):

And let M be a smallest algebra generated by U1;U2;U3 types, and M
0 be a

set of U1[U2[U4, andM
00 be a set of U1

:

[U2
:

[U4. Then we haveM =M
0 =M

00

(see [2]), so we can imagine the geometric �gures for members of M. The algebra

M contains all Borel sets which intersect transversally to the ideal boundary of the

hyperbolic space, and all members of M have a �nite volume (see [2]). The proof

of �nite additivity of � on M is also easy.

For disjoint oi 2 M, we get

�(o1 [ o2) = lim
�!0

Z
o1[o2

dV� = lim
�!0

(

Z
o1

dV� +

Z
o2

dV�)

= lim
�!0

Z
o1

dV� + lim
�!0

Z
o2

dV� = �(o1) + �(o2):

For a center cone U3 with a radius R and a section B, the volume of U3 is
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obtained by a di�erent and useful method (see [2])

�(U3) = lim
�!0

Z
U3

d� dx1 ^ � � � ^ dxn

(d2
�
� jxj2)

n+1

2

= lim
�!0

Z
B

Z
R

0

d�r
n�1

(d2
�
� r2)

n+1

2

dr d�

=

Z
B

Z



rn�1

(1� r2)
n+1

2

dr d�;

where d� is the volume form of the Euclidean unit sphere Sn�1 and 
 represents a

contour from 0 to R in C traversing in a clockwise direction around 1, i.e., 
 is an

over-going path with respect to 1.

A hyperbolic sphere model Sn
H
which is topologically equivalent to an unit sphere

and considered a two fold covering ofK
n

is better than the extended Kleinian model

K
n

, when we consider invariance. For any transformation f in Lorentz group

O(n; 1) which contains the hyperbolic isometry group as an index two subgroup

and any set U in M, we obtain �(f(U)) = �(U). This invariance is an important

property and di�cult to prove (see [2]).

2. Extended hyperbolic space

In this section, we study the hyperbolic sphere model Sn
H

and the extended

Kleinian model K
n

as an analytic continuation of the hyperbolic space H n . The

hyperbolic sphere S
n

H
is topologically a sphere Sn which is obtained by projec-

tivizing R
n;1 with only R

+ , the positive real numbers, we identifying a half lay

emanating from the origin to a point. Hence S
n

H
is a double cover of RPn and

consists of three parts: the hyperbolic part Hn, the Lorentzian part Sn1 and the

projectivization of the light cone.

The metric on S
n

H
is given by the induced metric on Hn for the hyperbolic part

Hn and the negative of the induced metric on the Lorentzian part Sn1 . Sometime,

it would be helpful if we visualize S
n

H
as the Euclidean sphere in R

n;1 but with

the induced metric coming from the Minkowski (�)-unit sphere through the radial

projection and two fold covering of K
n

.

Note that our metric is negative of the original Lorentzian metric and the norm

square of a tangent vector is positive. Hence this computation suggests us to choose

a negative sign for a natural choice of sign for the norm of a tangent vector in

Lorentzian part of S1
H
, and for tangent vectors in the radial direction in Lorentzian

part of general Sn
H
as well. Similarly it is not hard to check the clockwise contour

integral of the volume form gives sign �in�1 for Lorentzian part. If n = 2, the sign

for the volume is �i and this suggests us that i is the natural choice for the sign

for the norm of the spacelike tangent vector in the Lorentzian part of S2
H
and in

S
n

H
as well. This gives us a natural choice of signs for the norm of various tangent

vectors which are compatible with volume form on S
n

H
. We summarize as follows.

A tangent vector on the hyperbolic part on S
n

H
has a positive real norm, and

a tangent vector on the Lorentzian part on S
n

H
has a negative real, zero, or pos-

itive pure imaginary norm depending on whether it is timelike, null, or spacelike

respectively.

We can see various similarities between the Euclidean sphere Sn and the hyper-

bolic sphere Sn
H
in the following listed theorems (see [1], [3]).
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Theorem 1. vol(S
n

H
)= in�vol(Sn).

Remark. If we change the d as 1 + �i, we have di�erent relation between vol(Sn
H
)

and vol(Sn): vol(Sn
H
)= (�i)n vol(Sn).

Theorem 2. The total length of any great circle is 2�i.

Theorem 3. The k-dimensional volume of any k-dimensional geodesic sphere is

vol (Sk
H
).

Theorem 4. For any vectors x and y in S
n

H
and a point p in x? \ y?, we have

hx; yi = kxkkyk cos\(xp; yp)

hx; yi = kxkkyk coshdH(x; y):

Theorem 5. The area of a triangle in S
2
H

is � � A � B � C, where A;B;C are

the angles of the given triangle.

Theorem 6. Letting A;B;C stand for the angles and a; b; c for the extended hy-

perbolic length of opposite sides, we obtain the hyperbolic cosine law and the dual

cosine law on the hyperbolic sphere S
2
H
,

cosC =
cosha cosh b� cosh c

sinh a sinh b

cosh c =
cosA cosB + cosC

sinA sinB
:

Also we have the spherical cosine law and dual cosine law on the spherical sphere

S
2
S
, where a; b; c represent the extended spherical length,

cosC =
cos c� cosha cosh b

sin a sin b

cos c =
cosA cosB + cosC

sinA sinB
:

Theorem 7. Letting A;B;C stand for the angles and a; b; c for the extended hy-

perbolic length of opposite sides, we obtain the hyperbolic sine law on the hyperbolic

sphere S
2
H
,

sinh a

sinA
=

sinh b

sinB
=

sinh c

sinC
:

Also we have the spherical sine law on the spherical sphere S
2
S
, where a; b; c represent

the extended spherical length,

sin a

sinA
=

sin b

sinB
=

sin c

sinC
:

Remark. The spherical sphere Sn
S
is made by the following �-metric on R

n :

ds2
�
= �

�
�xidxi

d2
�
� jxj2

�2
�

�dx2
i

d2
�
� jxj2

:
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