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LYAPUNOV EXPONENTS FOR PRODUCTS OF RANDOM

MATRICES

JHISHEN TSAY

Abstract. For each product of random matrices there associates a Lyapunov

exponent. To evaluate the Lyapunov exponent one needs to �nd the invariant

measure on the projective space P (Rd). The goal of this article is to study

the invariant measure and to calculate the Lyapunov exponent explicitly.

1. Introduction

Let fYn; n 2 Ng be a sequence of i.i.d. random d� d invertible matrices with common

distribution �.

We assume that � has support in SL(d;R), set of real d�d matrices with determinant

one and that E[log+ kY1k] < 1, where log+ x = maxflog x; 0g. Let Sn = Yn � � �Y1.
Suppose that a usual vector norm and a usual matrix norm in Rd have been chosen.

De�nition 1. The Lyapunov exponent  associated with � is de�ned by

 = lim
n!1

1

n
E[log kYn � � � Y1k]:

The Lyapunov exponent gives a measure of the exponential growth (decay) rate of the

matrix norm.

The existence of the Lyapunov exponent can be easily proved by considering the sub-

additive sequence E[log kYn � � �Y1k]. Some explicit results are the following.

Theorem 1. ([9]) Let Y1 be upper triangular. Then

 = max
1�i�d

E(ln j(Y1)iij):

Theorem 2. ([8]) If the d2 entries of A1 are independent Gaussian variables with mean

zero and variance �2. Then

 = ln� +
1

2
[ln 2 + 	(d=2)];

where 	 is the digamma function, 	(x) = �0(x)=�(x) and � is the standard gamma

function.

It is proved by Furstenberg and Kesten [4] that under some irreducible condition on

the random matrices and if x is a unit vector independent on fYng, then with probability

one,

 = lim
n!1

1

n
log kYn � � �Y1xk:

However, in most of the cases, the Lyapunov exponent cannot be calculated directly from

�. The formula for  involves an auxiliary measure on the projective space P (Rd) [3].
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Let x be a unit vector in Rd and u1 = x. For n = 2; 3; � � � , let

un =
Yn�1 � � �Y1x

kYn�1 � � �Y1xk
:

It is clear that the process f(Yn;un); n � 1g is a Markov chain on the phase space

SL(d;R)� Sd�1, and that

log kYn � � �Y1xk =

nX
k=1

log kYkukk:

Thus if the process is ergodic then one expects that the limit

�(x) = lim
n!1

1

n
log kYn � � �Y1xk

exists almost surely and can be expressed as an average with respect to an invariant

measure on the phase space. This leads to the consideration of the invariant measure on

the projective space P (Rd) of Rd.

For two non-zero vectors x;y 2 Rd we say x � y if x = cy for some c 2 R. The

projective space P (Rd) is the quotient space Rdnf0g= �. For x 2 Rdnf0g, let x denote

its equivalence class in P (Rd). For M 2 SL(d;R) we set M � x = Mx. Let � be a

probability measure on SL(d;R), and � a probability measure on P (Rd).

De�nition 2. The probability measure ��� on P (Rd) is a probability measure on P (Rd)

which satis�es Z
f(x)d� � �(x) =

Z Z
f(M � x)d�(M)d�(x)

for every bounded Borel function f on P (Rd). We say that � is �-invariant if � � � = �.

The following theorem [5] gives the relationship between the invariant measures and

the Lyapunov exponent.

Theorem 3. Let fYn; n 2 Ng be a sequence of i.i.d. random matrices with common

distribution �. Suppose that � has support in SL(d;R) and that E[log+ kY1k] <1. Then

with probability one,

 = sup

Z Z
log

kMxk

kxk
d�(M)d�(x)

where the sup is taken over all �-invariant measures.

In the case that there is only one invariant measure on P (Rd) we have a simple ex-

pression for . The di�culty of calculating the Lyapunov exponent comes from �nding

the invariant measure. One explicit example is the following [7].

Theorem 4. With

Y1 =

�
a b

c d

�
;

we suppose that (a; b)T and (c; d)T are i.i.d. N(0;�) random vectors. Then the unique

invariant measure is Cauchy (0; 1) and

 = �
1

2
̂ +

1

2
ln[

1

2
tr(�) +

p
det(�)];

where ̂ is the Euler constant: ̂ = 0:577215669 : : : .
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2. The Existence and Uniqueness

The existence of the invariant measures on P (Rd) is a simple consequence of the fact

that P (Rd) being compact and separable. Let �n be a sequence of probability measures

on P (Rd). We say that �n converges weakly to a probability measure � on P (Rd) if

lim
n!1

Z
P (Rd)

f(x) d�n(x) =

Z
P (Rd)

f(x) d�(x)

for every bounded continuous function f on P (Rd). Let �k denote the k-fold convolution

of �.

Theorem 5. ([3]) There exists at least one �-invariant measure on P (Rd).

Proof :

Let �0 be any probability measure on P (Rd), and

�n =
1

n

nX
k=1

�
k � �0:

Since P (Rd) is separable and compact there exists a weakly convergent subsequence of

f�ng and its limit, say �, is a probability measure on P (Rd). For any n,

� � �n =
1

n

nX
k=1

(�
k+1 � �0)

=
1

n

nX
k=1

(�k � �0) +
1

n
(�n+1 � �0 � � � �0)

= �n +
1

n
(�

n+1 � �0 � � � �0)

so that, letting n!1 along a subsequence, � � � = �.

In the sequel we will consider the special case d = 2. Let T� (resp. G�) be the smallest

closed semigroup (resp. group) containing the support of �. A probability measure � on

P (R2) is said to be continuous if �(x) = 0 for every x 2 P (R2).

Given a subset H of SL(2;R), we say that H is contracting if there exists a sequence

fMn; n � 1g in H for which kMnk
�1Mn converge to a rank one matrix. We say that H

is strongly irreducible if there does not exist a subset V of R2 which is a �nite union of

one-dimensional subspaces of R2 such thatM(V ) = V for everyM 2 H. It is not hard to

see that a subgroup H of SL(2;R) being contracting is equivalent to being non-compact.

Theorem 6. ([3]) If G� is strongly irreducible and contracting. Then there exists a unique

�-invariant measure and which is continuous.

If G� is not contracting (i.e., G� being compact) then all matrices in G� must have

norm one. Therefore the Lyapunov exponent vanishes. If G� is contracting and strongly

irreducible Theorem 6 gives that there is only one �-invariant measure. We may ask

what if G� is contracting but not strongly irreducible, can there be two or more invariant

measures? The answer is positive.

Example :

Let � be concentrated on

A =

�
2 0

0 1
2

�
;

and x1, x2 be the corresponding directions of (1; 0)T , (0; 1)T . It is clear that G� is

contracting but not strongly irreducible. Let �(x1) = p and �(x2) = 1� p, 0 < p < 1. We
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have for each bounded Borel function f on P (R2),

� � �(f) =

Z Z
f(M � x) d�(M) d�(x)

= p

Z
f(M � x1)d�(M) + (1� p)

Z
f(M � x2)d�(M)

= pf(A � x1) + (1� p)f(A � x2)

= pf(x1) + (1� p)f(x2)

= �(f):

This shows that � is an invariant measure.

However, in this case, G� being contracting but not strongly irreducible, we have a

simple formula for the Lyapunov exponent. We now assume that all the matrices in

G� cannot be diagonalized simultaneously. For the situation that G� contains diagonal

matrices only, explicit result for the Lyapunov exponent has been given [9].

Theorem 7. If G� is contracting but not strongly irreducible, then there exist vectors x1,

x2 2 R2 such that

 =
1

2

Z �
log

kMx1k

kx1k
+ log

kMx2k

kx2k

�
d�(M):

Proof :

By Proposition 4.3 ([2], p.31) we have that there exist x;x1;x2 2 P (R2) such that

B = fM � xjM 2 G�g = fx1;x2g. Suppose that x1 6= x2. Since I 2 G�, x 2 B. We claim

that �(fx1g) = �(fx2g) =
1
2
. Let f = 1Bc . We have

�(B
c
) =

Z
f(x) d�(x)

=

Z Z
f(M � x) d�(M) d�(x)

=

Z
[f(x1)�(fM jM � x = x1g) + f(x2)�(fM jM � x = x2g)] d�(x)

= 0:

This shows that �(fx1g) + �(fx2g) = 1. Now let f = 1fx1g. We have

�(fx1g) =

Z
f(x) d�(x)

=

Z Z
f(M � x)d�(M) d�(x)

=

Z
�(fM�1 � x1g) d�(M)

= �(fx1g)�(fM jM�1 � x1 = x1g) + �(fx2g)�(fM jM�1 � x1 = x2g):

Together with �(fM jM�1 � x1 = x1g) + �(fM jM�1 � x1 = x2g) = 1 ( �(fM jM�1 � x1 =
x2g) > 0, otherwise G�, after suitable change of basis, will contain only diagonal matrices)

and �(fx1g) + �(fx2g) = 1 we solve the last equation and get �(fx1g) = �(fx2g) =
1
2
. If

x1, x2 are vectors in directions x1, x2, then

 =
1

2

Z �
log

kMx1k

kx1k
+ log

kMx2k

kx2k

�
d�(M):

This formula holds also for x1 = x2.

In the case G� being strongly irreducible and contracting we know that there is only one

�-invariant measure. In the next section we give another example for explicit calculation
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of the invariant measure and the Lyapunov exponent. It needs further e�ort to �nd the

invariant measures in more cases.

3. The random Schr�odinger equation

The one-dimensional Anderson model [1] is the simplest quantum-mechanical approx-

imation to the scattering of electrons in crystals with impurities. The model is given by

the Hamiltonian operator

Hun = ��un + V (n)un

acting in the Hilbert space l2(Z). Here � is the discrete Laplacian

�un = un+1 + un�1 � 2un;

and V (n), the random potentials, are independent identically distributed (i.i.d.) real

random variables with common distribution �. Here, we use the same notation for distri-

butions of random matrices and random potentials. We are interested in the eigenvalue

equation (random Schr�odinger equation)

Hun = Eun;

i.e.,

2un � un�1 � un+1 + V (n)un = Eun: (1)

We can rewrite equation (1) in matrix form as�
un+1
un

�
=

�
V (n) + 2�E �1

1 0

��
un
un�1

�
: (2)

Let

xn =

�
un
un�1

�
;

and

Yn =

�
V (n) + 2�E �1

1 0

�
:

We may write (2) in the following form

xn+1 = Ynxn:

Thus, if the initial value x0 is given, we can integrate the solution by a product of random

matrices

xn+1 = Yn � � � Y1x0:

Note that Yn and their products belong to the special linear group SL(2;R). If we de�ne

an =
un

un�1
2 _R = R [ f1g;

then

an+1 = (V (n) + 2�E)�
1

an
:

It is clear that (V (n); an) is a Markov chain. A �-invariant measure � on _R is a measure

satisfying Z Z
f(v + 2�E � y

�1
)d�(y)d�(v) =

Z
f(y)d�(y)

for every bounded Borel function f on _R.

Let f(t) =
R
e�itv d�(v) be the characteristic function of �. Klein and Speiss [6] show

the following theorem on the regularity of the invariant measure.
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Theorem 8. Let n 2 N, n � 3, and f be n times di�erentiable on (0;1) with bounded

derivatives such that

lim
t!1

f
(k)

(t) = 0

for all k = 0; : : : ; n. Then the unique �-invariant measure � is absolutely continuous and

d�=dx is of class C[(n�1)=2]�1.

Thus, suppose that � satis�es the assumption of Theorem 8, then the integral equation

for the density � of � will be

�(x) =

Z
�

�
1

v + 2�E � x

�
1

(v + 2�E � x)2
d�(v): (3)

Our result for the random Schr�odinger equation is the following [10].

Theorem 9. Suppose that the distribution of the random potential is Cauchy (E � 2; �).

Then

 (x) =
�

�(x2 + �2)

with � > 0 and �2 � �� � 1 = 0 satis�es equation (3), i.e., the invariant measure is

Cauchy (0; �). Furthermore, the Lyapunov exponent is log �.

Proof. We need to show that

 (x) =

Z
 

�
1

v � x

�
1

(v � x)2
�

�(v2 + �2)
dv: (4)

Indeed, Z
�

�[(v � x)�2 + �2]

1

(v � x)2
�

�(v2 + �2)
dv

=
��

�2

Z
1

�2(v � x)2 + 1

1

(v2 + �2)
dv

=
��

�2

Z �
av + b

�2(v � x)2 + 1
+

cv + d

(v2 + �2)

�
dv

=
��

�

�
ax+ b

�
+
d

�

�
; (5)

where where

a =
�2�4x

�4x4 + 2�2(�2�2 + 1)x2 + (�2�2 � 1)2

b =
3�4x2 + �4�2 � �2

�4x4 + 2�2(�2�2 + 1)x2 + (�2�2 � 1)2

c =
2�2x

�4x4 + 2�2(�2�2 + 1)x2 + (�2�2 � 1)2

d =
�2x2 � �2�2 + 1

�4x4 + 2�2(�2�2 + 1)x2 + (�2�2 � 1)2
:

Now, by substituting a, b, c and d into (5), we obtainZ
 

�
1

v � x

�
1

(v � x)2
�

�(v2 + �2)
dv =

1

�

�(�� + 1)

�2x2 + (�� + 1)2
:

Equation (4) follows by �2 = �� + 1.

The formula for the Lyapunov exponent is

 =

Z Z
log

kMxk

kxk
d�(M) d�(x);
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where

Mx =

�
v �1
1 0

��
x

y

�
=

�
vx� y

x

�
:

Let x = x=y. Then M � x = Mx = (vx� 1)x�1. Again, we use the same notation �

for the distributions of random matrices and random potential. We get

 =
1

2

Z Z
log

(vx� 1)2 + x2

x2 + 1
d�(v)d�(x):

By straightforward calculation and using the fact ���(f) = �(f) for f(x) = log(x2 + 1),

we end up with

 = log �:
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