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ON REGULAR BAER RINGS

JIN YONG KIM AND JAE KEOL PARK

Abstract. We show that a countable �-regular Baer ring is semiprimary.
Actually it is shown that a �-regular Baer ring with only countably many
idempotents is semiprimary. This rersult allows us to generalize a theorem of
Rangaswamy on regular Baer rings. Examples are provided to illustrate and
delimit our results.

R will denote an associative ring with unity, J(R) its Jacobson radical and I(R)
its set of idempotent elements. We use jX j and c to denote the cardinality of a set
X and the cardinality of the continuum, respectively.

>From [4], a ring R is called �-regular if for each element a 2 R there exist a
positive integer n (depending on a) and an element x 2 R such that an = anxan. A
�-regular ring R for which the n in the above can be taken to be 1 is called regular.
Recall from [5] that a ring R is Baer if the right annihilator of every nonempty
subset of R is generated as a right ideal by an idempotent. The study of Baer rings
has its roots in functional analysis [5]. A ring R is called right (resp. left) PP if
the right (resp. left) annihilator of every element of R is generated as a right (resp.
left) ideal by an idempotent. Note that every Baer ring is a right and left PP ring.

In 1950 [4], Kaplansky proved that every orthogonally �nite (i.e., no in�nite
set of pairwise orthogonal idempotents) �-regular ring is semilocal. In 1967 [8],
Small proved that every orthogonally �nite right PP ring is Baer. As a corollary
he obtained that every right perfect right PP ring is semiprimary and left PP. In
1974 [7], Rangaswamy established that a regular Baer ring of cardinality less than
c is semisimple Artinian.

The foregoing results motivated us to ask the following natural question: Is a
countable �-regular Baer ring a semiprimary ring? In this paper we give a positive
answer to this question. More generally we will show that if R is a �-regular Baer
ring with jI(R)j < c, then R = A � B where A is a �nite direct sum of division
rings Ai, where jAij � c and B is a semiprimary ring with jBj < c. Rangaswamy's
theorem then becomes an immediate corollary of this result.

Recall from [3, p.210] that a ring R is called an I-ring if every nonnil right ideal
of R contains a nonzero idempotent. It can be checked easily that �-regular rings
are I-rings.

Theorem 1. Let R be an orthogonally �nite right PP ring. Then the following
conditions are equivalent:
(i) R is an I-ring;
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(ii) R is a semiprimary ring;
(iii) R is a �-regular ring.

Proof. Since semiprimary rings are �-regular and �-regular rings are I-rings, we
only need to prove (i) )(ii). Let R be an orthogonally �nite I-ring which is right
PP. Then by [4, Theorem 2.1] R is semilocal. So it is enough to show that J(R) is
nilpotent, where J(R) is the Jacobson radical of R. Write R =

Pn

i=1 eiR, where
fe1; � � � ; eng is a complete set of primitive idempotents. Now J(R) = e1J(R)+� � �+
enJ(R). We claim that each eiJ(R) is nilpotent. Suppose that there exists some
eiJ(R) which is not nilpotent. Then (eiJ(R))

2 6= 0 for some i, so eixei 6= 0 for
some x 2 J(R). Consider the map feix : eiR ! eiR de�ned by feix(eir) = eixeir

. So Im(feix) is projective. Thus Ker(feix)=0 since eiR is indecomposable and
Im(feix) 6= 0. Now eix 2 J(R). Since R is an I-ring, J(R) is nil! and hence there
is an integer m > 1 such that (eix)

m = 0 and (eix)
m�1 6= 0. But (eix)

m�1 2 Ker
(feix) = 0, which is a contradiction. Thus each eiJ(R) is nilpotent. Consequently
J(R) is nilpotent.

Immediately we have the following corollary which is due to Small [8].

Corollary 2. If R is a right perfect right PP ring, then R is a semiprimary ring.

Example 3. The condition \orthogonally �nite" in Theorem 1 is not super
uous.
There exists a Baer ring (hence right PP) which is an I-ring, but not �-regular. Now
let R = f(an)

1

n=1 2
Q
Q j an 2 Z eventuallyg, where

Q
Q is the countably in�nite

direct product of the rationals Q. Then
Q
Q is the maximal ring of quotients Q(R)

of R . Since Q(R) is regular self-injective, it is a Baer ring. Also note that the set of
all idempotents of Q(R) is that of R. Now for a nonempty subset X of R, it follows
that rR(X) = rQ(R)(X) \ R = eQ(R) \ R for some idempotent e 2 R. Therefore
rR(X) = eR, and hence R is a Baer ring. Next, to show that R is an I-ring, let K
be a nonzero ideal of R. Then there is a nonzero element, say x 2 K with nonzero
k-th coordinate, say xk for some k. Let y 2 Q(R) with the k-th coordinate x�1k and
0 for the other coordinates. Then y 2 R and xy 2 K is a nonzero idempotent in R.
So R is an I-ring. Finally, let � = (2; 2; : : : ) 2 R. If R is �-regular, then there are
a positive integer n and an element � 2 R such that �n = �n��n. So there is an
integer m such that 2n = 2nm2n, which is a contradiction. Thus the ring R cannot
be �-regular.

Recall the following result due to Rangaswamy [7,Theorem 1 ] : Any countable
regular Baer ring is semisimple Artinian. In order to give a nontrivial generalization
of this result we have the following preparatory lemma.

Lemma 4. If R is a Baer ring with jI(R)j < c, then R is orthogonally �nite.

Proof. See [6, Theorem 2 ].

Theorem 5. Let R be a �-regular Baer ring with jI(R)j < c. Then R is semipri-
mary. In particular, if R is semiprime, then R is semisimple Artinian.

Proof. This result is a consequence of Lemma 4 and Theorem 1.

Corollary 6. Let R be a �-regular Baer ring with jI(R)j < c. Then
(i) R = A�B (ring direct sum) and B is countable;
(ii) A = �m

i=1Ai, where each Ai is a division ring with jAij � c;
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(iii) B �=

0
BB@

B1 B12 � � � B1k
0 B2 � � � B2k
...

...
. . .

...
0 0 � � � Bk

1
CCA , where each Bi is a simple Artinian ring and

each Bij is a left Bi-right Bj-bimodule.
Furthermore, if R is �-regular Baer ring with jI(R)j < c such that R is an algebra
over an uncountable �eld, then R is a �nite direct sum of division rings.

Proof. Since R is semiprimary Baer by Theorem 5, it follows that there is a positive
integer n by [1,Theorem 4.4 ] such that

R �=

0
BB@

R1 R12 � � � R1n
0 R2 � � � R2n
...

...
. . .

...
0 0 � � � Rn

1
CCA

with each Ri is simple Artinian and each Rij is a left Ri-right Rj-bimodule. For
1 � i � n� 1, if Ri is uncountable, then Ri should be a division ring. In this case,
since Rij for i < j � n� 1 is a left vector space over a division ring Ri, it follows
that Rij = 0 whenever Ri is uncountable. Next, suppose that Rn is uncountable.
Then it also should be a division ring. In this case, since Rin for 1 � i � n� 1 are
right vector spaces over Rn. Thus each Rin = 0 whenever Rn is a division ring.
Thus we can get desired result.

The following result of Rangaswamy [7] becomes an immediate consequence of
Theorem 5 or Corollary 6.

Corollary 7. Let R be a regular Baer ring with jRj < c. Then R is semisimple
Artinian.

The following examples are provided to delimit our results. Recall that a ring
R is called right (resp. left) weakly regular (or fully idempotent) if a 2 aRaR (resp.
a 2 RaRa) for every a 2 R. Right and left weakly regular rings are called weakly
regular. Recall [2] that R is a quasi-Baer if the right annihilator of every right ideal
of R is generated (as a right ideal ) by an idempotent.

By Theorem 5, regular Baer rings with only countably many idempotents are
semisimple Artinian. So one may raise the following question: Is a weakly regular
Baer ring or a regular quasi-Baer ring with only countably many idempotents a
semisimple Artinian ring? But the following two examples eliminate these possi-
bilities.

Example 8. There exists a weakly regular Baer ring with only countably many
idempotents, but it is not semisimple Artinian. In fact let R be the �rst Weyl
algebra over a �eld of characteristic zero. Then R is a weakly regular Baer ring
with only countably many idempotents, but R is not semisimple Artinian.

Example 9. There exists a regular quasi-Baer ring with only countably many
idempotents, but it is not semiprimary. Thus Theorem 5 cannot be extended to
the case of quasi-Baer rings. For a �nite �eld F , let

R = f

0
BB@

A 0
a

a

0
. . .

1
CCA j A 2 Matn(F ); a 2 F; n = 1; 2; : : : g:
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Then R is prime regular, so R is quasi-Baer. Also note that R is countable. However
R is not orthogonally �nite and hence R cannot be semiprimary. In this case, note
that R cannot be a Baer ring because of Theorem 5.
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