홈 editorial content online
Volume 14 (2012)
No 1
Volume 13 (2011)
No 1
Volume 12 (2010)
No 1
Volume 11 (2009)
No 1, No 2
Volume 10 (2008)
No 1, No 2
Volume 9 (2006)
No 1, No 2
Volume 8 (2005)
No 1, No 2
Volume 7 (2004)
No 1, No 2
Volume 6 (2003)
No 1, No 2
Volume 5 (2002)
No 1, No 2
Volume 4 (2001)
No 1, No 2
Volume 3 (2000)
No 1
Volume 2 (1999)
No 1
Volume 1 (1998)
No 1

(2005 / vol.8 / no.1)
Decomposition of an integer for efficient implementation of Elliptic Curve Cryptosystem
Young-Ho Park
Pages. 45-51     



This paper presents the Gallant-Lambert-Vanstone method for
speeding up scalar multiplication of elliptic curves and an
alternate decomposition method using the theory of $mu$-Euclidean
algorithm. Also the extended method to hyperelliptic curves over
finite fields that have efficiently-computable endomorphisms is
presented.



1. Introduction
2. Gallant-Lambert-Vanstone method
3. Upper bounds on the components $k_1, k_2$
4. Extended method to hyperelliptic curves
5. Conclusion



Elliptic Curve Cryptosystem, Hyperelliptic Curve, Scalar Multiplication, Decomposition of integer