홈 editorial content online
Volume 14 (2012)
No 1
Volume 13 (2011)
No 1
Volume 12 (2010)
No 1
Volume 11 (2009)
No 1, No 2
Volume 10 (2008)
No 1, No 2
Volume 9 (2006)
No 1, No 2
Volume 8 (2005)
No 1, No 2
Volume 7 (2004)
No 1, No 2
Volume 6 (2003)
No 1, No 2
Volume 5 (2002)
No 1, No 2
Volume 4 (2001)
No 1, No 2
Volume 3 (2000)
No 1
Volume 2 (1999)
No 1
Volume 1 (1998)
No 1

(2003 / vol.6 / no.2)
WEYL'S THEOREM AND TENSOR PRODUCT FOR OPERATORS
In Hyoun Kim
Pages. 69-74     



An operator $T$ is called $(p,k)$-quasihyponormal if
${T^*}^k (|T|^{2p}-|T^*|^{2p})T^k geq 0, ~ (0<p leq 1 ~; ~k in
{Bbb Z}^+ )$, which is a common generalization of
$p$-quasihyponormality and $k$-quasihyponormality. In this paper
we consider the Putnam's inequality, the Berger-Shaw's inequality,
the Weyl's theorem and the tensor product for
$(p,k)$-quasihyponormal operators.



$(p,k)$-quasihyponormal, Weyl's theorem, tensor product



47A80, 47B20