홈 editorial content online
Volume 14 (2012)
No 1
Volume 13 (2011)
No 1
Volume 12 (2010)
No 1
Volume 11 (2009)
No 1, No 2
Volume 10 (2008)
No 1, No 2
Volume 9 (2006)
No 1, No 2
Volume 8 (2005)
No 1, No 2
Volume 7 (2004)
No 1, No 2
Volume 6 (2003)
No 1, No 2
Volume 5 (2002)
No 1, No 2
Volume 4 (2001)
No 1, No 2
Volume 3 (2000)
No 1
Volume 2 (1999)
No 1
Volume 1 (1998)
No 1

(2002 / vol.5 / no.2)
VARIATIONAL PROPERTIES OF HARMONIC RIEMANNIAN FOLIATIONS
Kyoung Hee Han, Hobum Kim
Pages. 59-64     



We obtain a second variation formula for the energy
functional for a harmonic Riemannian foliation in terms of the
second and third fundamental tensors, integrability tensor and
curvature regarding the foliation. From this formula, we conclude
that if the second fundamental tensor and the integrability tensor
of a harmonic Riemannian foliation is small compared with the
partial Ricci tensor, then it is stable.



1. Introduction
2. Energy of a foliation
3. Second variation formula and stability of a harmonic Riemannian foliation.



Riemannian foliations, harmonic foliations, energy functional, stability



53C12, 58E30