홈 editorial content online
Volume 14 (2012)
No 1
Volume 13 (2011)
No 1
Volume 12 (2010)
No 1
Volume 11 (2009)
No 1, No 2
Volume 10 (2008)
No 1, No 2
Volume 9 (2006)
No 1, No 2
Volume 8 (2005)
No 1, No 2
Volume 7 (2004)
No 1, No 2
Volume 6 (2003)
No 1, No 2
Volume 5 (2002)
No 1, No 2
Volume 4 (2001)
No 1, No 2
Volume 3 (2000)
No 1
Volume 2 (1999)
No 1
Volume 1 (1998)
No 1

(2000 / vol.3 / no.1)
Growth of Mean Lipschitz Functions in the Complex Ball
E. G. Kwon
Pages. 69-72     



Holomorphic mean Lipschitz space in the open unit ball of
$Bbb{C}^n$ is introduced. The membership of the space is
expressed in terms of the growth of the radial derivatives, which
reduces to a well-known theorem when $n = 1$. The membership is
also expressed in terms of the mean growth of the tangential
derivatives.



1. Introduction 2. Defining Mean Lipscthiz Space 3. Radial Derivative of the Lipschitz functions 4. More on the growth of Mean Lipschitz functions



Lipschitz space, mean Lipschitz space



21A16, 32A30